Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999
  • 1985-1989  (4)
  • 1965-1969
  • 1988  (4)
Material
Years
  • 1995-1999
  • 1985-1989  (4)
  • 1965-1969
Year
  • 1
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 27 (1988), S. 553-560 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary When grown in a synthetic medium most of the 51 strains of the genera Saccharomyces, Saccharomycodes, Zygosaccharomyces and Schizosaccharomyces investigated formed l-malate during fermentation. The quantity varied between 0.1 and 2.6 g malate per liter. Two strains of Saccharomyces cerevisiae synthesized malate at a rate of about 1.5 g/l. Malate was liberated during the growth phase and not metabolized during the stationary phase. Optimum malate formation was observed at a sugar concentration of about 20% (w/v), at pH 5 and at suboptimal nitrogen concentrations of less than 300 mg N/liter. Of the amino acids aspartate and glutamate were most favourable. If ammonium salts were used as the nitrogen source, significant amounts of malate were formed when the pH was kept constant by buffering. Trace metals had no or only little influence on malate synthesis. Biotin and pantothenate were essential for growth. Added 14CO2 led to the formation of approximately equal quantities of labelled malate and succinate by S. cerevisiae strain 52, whereas about ten times more malate than succinate was formed by Saccharomyces uvarum. Avidin strongly inhibited the formation of malate while the inhibiton of succinate synthesis and of growth was comparatively much less. Malate is obviously formed by reduction of oxalacetate, the synthesis of which is catalysed by a biotin-dependent pyruvate carboxylase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 37-41 
    ISSN: 1432-072X
    Keywords: Yeast ; Hexose transport ; Sugar ; Malate uptake ; 2,4-DNP ; Zygosaccharomyces bailii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 149 (1988), S. 261-267 
    ISSN: 1432-072X
    Keywords: Yeast ; Hanseniaspora uvarum ; Pichia kluyveri ; Killer toxin ; dsRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By heat treatment killer strains of the type K1 of Saccharomyces cerevisiae that are known to harbour dsRNA plasmids were completely cured, whereas only a small fraction of the clones of the killer type K2 had lost the dsRNA dependent killer character. The K2 killers but not the strains of killer type K1 were easily cured by cycloheximide. Killer strains of Hanseniaspora uvarum were not curable by heat treatment. Curing was successfull with cycloheximide or 5-fluorouracil. Two double-stranded RNA plasmids were detected in the killer strains of H. uvarum. The smaller dsRNA plasmid was absent in the strains that were cured of their killer character by 5-fluorouracil. The killer character of H. uvarum was transferred to S. cerevisiae by spheroplast fusion. The fusion products showing the killer character contained both dsRNA plasmids, obviously the smaller plasmid (M-dsRNA) carries the genes for killer toxin formation. Killer strains of Pichia kluyveri were not curable of their killer character, in these strains no dsRNA plasmids were detected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...