Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994
  • 1985-1989  (2)
  • 1988  (2)
Material
Years
  • 1990-1994
  • 1985-1989  (2)
Year
Keywords
Language
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Numerische Mathematik 52 (1988), S. 427-458 
    ISSN: 0945-3245
    Keywords: AMS(MOS): 65F10 ; 65F35 ; 65N20 ; 65N30 ; CR:G1.8
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Summary We derive and analyze the hierarchical basis-multigrid method for solving discretizations of self-adjoint, elliptic boundary value problems using piecewise linear triangular finite elements. The method is analyzed as a block symmetric Gauß-Seidel iteration with inner iterations, but it is strongly related to 2-level methods, to the standard multigridV-cycle, and to earlier Jacobi-like hierarchical basis methods. The method is very robust, and has a nearly optimal convergence rate and work estimate. It is especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: The paper presents the mathematical concepts underlying the new adaptive finite element code KASKADE, which, in its present form, applies to linear scalar second-order 2-D elliptic problems on general domains. Starting point for the new development is the recent work on hierarchical finite element bases due to Yserentant (1986). It is shown that this approach permits a flexible balance between iterative solver, local error estimator, and local mesh refinement device - which are the main components of an adaptive PDE code. Without use of standard multigrid techniques, the same kind of computational complexity is achieved - independent of any uniformity restrictions on the applied meshes. In addition, the method is extremely simple and all computations are purely local - making the method particularly attractive in view of parallel computing. The algorithmic approach is illustrated by a well-known critical test problem. {\bf Keywords:} finite elements, hierarchical basis, adaptive mesh refinement, preconditioned conjugate gradient methods.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...