Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 2034-2038 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new method is proposed for dealing with difficulties in molecular dynamics (MD) simulations caused by nonpreservation of zero-point energies (ZPE) in classical dynamics. Specifically addressed is a difficulty, for molecules held in weakly bound clusters, of energy flow from the initial ZPE of stiff molecular vibrations into soft cluster modes, causing unphysical dissociation or melting of the cluster. The remedy proposed is a classicallike MD algorithm, which treats the stiff modes by semiclassical Gaussian wave packets and the soft modes by classical dynamics, using the time-dependent self-consistent field (TDSCF) approach to couple the classical and the semiclassical modes. The resulting algorithm is very similar in form to classical MD, is computationally simple, stable, and appears free of unphysical effects. The method is illustrated by test applications to models of the clusters I2He and (HBr)2 in the ground states, which dissociate at the expense of their ZPE classically, but remain stable in the new method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 6484-6490 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation dynamics of a collinear model of the van der Waals cluster Xe–HI is used as a testing ground for time-dependent self-consistent field (TDSCF) approximations. In this study, the quantum-mechanical TDSCF and a combined classical/quantal TDSCF (in which the light atom is treated quantum mechanically, the heavy atoms are treated classically) are compared to numerically exact wave packet calculations. Very good agreement is found between the TDSCF approximations and the exact result over the entire subpicosecond time duration of the process. In particular, all the properties related to the quantal degree of freedom in the combined quantal/classical TDSCF method reproduce almost perfectly the exact results. However, the classical mode in the hybrid approximation is somewhat less well described due to insufficient representation of energy transfer between the modes. The conclusions are very promising as to the applicability of TDSCF methods, in particular the hybrid quantal/classical scheme to more complex systems in which only a few degrees of freedom can be treated quantum mechanically.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 5168-5176 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Theoretical and experimental results are compared for the 257 nm photolysis of methyl iodide adsorbed on an MgO(100) crystal. Molecular-dynamics calculations treat CH3I as a pseudodiatomic molecule and describe the geometry and the vibrational and librational frequencies of ground state CH3I on the surface of a solid at 125 K. The simulations modeled the photodissociation dynamics of the adsorbed species. The photoexcitation of CH3I at 257 nm is to the 3Q0 state which is, in turn, coupled to the 1Q1 state. The electronic surface coupling allows for two dissociation pathways, producing either ground- or excited-state iodine atoms in concert with ground-state methyl radicals. The I*/I branching ratio and the velocity and angular distributions of both photofragments are predicted by the theory. A comparison is made between these predictions and experimental observation of the I*/I branching ratio, the velocity distribution of the methyl fragment, and the internal state distribution of the methyl. A substantial lowering of the I*/I ratio as compared to data from the gas-phase photodissociation studies is both predicted by theory and seen experimentally. Theoretical simulations attribute this change to efficient trapping of the I* photofragments by the surface. Further comparisons between the theoretical predictions and the experimental data support a model where the molecule is aligned perpendicular to the surface and the escape of iodine atoms from the surface following the photodissociation of adsorbed methyl iodide involves collisions with the surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 7242-7250 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation of HCl in the cluster Ar...HCl by an extremely short pulse was studied using a hybrid quantum mechanical/classical approach. In this method, the H atom is treated quantum mechanically, the heavy atoms classically, and the time-dependent self-consistent-field (TDSCF) approximation is used to couple the quantum with the classical modes. The results are compared with those of classical trajectory calculations. On the whole, good qualitative agreement is found between the results of the (partly quantum) hybrid method and the pure classical ones. However, quantum interference effects of quantitative significance are found both in the angular and in the kinetic energy distribution of the H atom product. These effects, and resonances that contribute to the process, are analyzed in terms of wave packets obtained for the H atom in the hybrid method. The usefulness and applicability of the hybrid method are discussed in the light of the results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 887-893 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Molecular-dynamics (MD) simulations are used to study the vibrational properties of ICl adsorbed on an MgO(001) surface, and the photodissociation dynamics of the molecule after excitation to a 1Π electronic state. The electronic ground-state simulations show that ICl lies nearly parallel to the surface and occupies a single orientational site at surface temperatures below 150 K. Above 350 K the molecule hops between two orientational sites on the surface, and at 500 K full rotational diffusion of the adsorbate in the surface plane occurs. The multiplicity of sites and the onset of rotational diffusion at high T were found to greatly affect the dissociation dynamics and its temperature dependence. The photodissociation simulations show that only a fraction of the Cl atoms and some of the I atoms (which have a much higher binding energy) leave the surface following photolysis (at these energies). The fraction of Cl atoms leaving the surface subsequent to photodissociation at 50 K is ∼0.5, and it decreases as T is raised to 150 K. The trajectories show that Cl atoms leave the surface preferentially for initial ICl orientations in which the Cl end "points down.'' This orientation ensures that the escaping atom rapidly collides with the surface atoms. Momentum transfer due to surface local roughness is crucial for the Cl to acquire "escape velocity'' normal to the surface. The angular intensity distribution of the Cl atoms is sensitive to surface corrugation, and the energy distribution of the photofragments strongly reflects the Cl/surface collision stage of the process. It is concluded that photodissociation experiments can provide information both on surface local structure and on photofragment/surface interaction and energy transfer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 3551-3558 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Classical molecular dynamics simulations of F2 photodissociation in a host Ar crystal are presented. At temperature T=12 K, the photodissociation yield shows a sharp threshold for an excess energy of ∼0.6 eV, and it reaches nearly unity for excess energies above 2 eV. For a given excess energy, the quantum yield at 4 K is higher than a 12 K, and is predicted to remain finite even at 0 K. The transition state for photofragment exit from the reagent cage is found to be located in well-defined windows in the unit cell of the surrounding solid. The quantum yields (or photodissociation probabilities) are extremely high, especially at low T, in comparison with the values found in previous studies, e.g., for Cl2 in Xe and in Ar. Indeed, for high excess energy the near-unit quantum yields indicate the virtual absence of an inhibiting cage effect on the reaction. The anomalous behavior of F2 in Ar is attributed to the short effective range of the repulsive F/Ar interaction, which enables the F atom to exit the cage and migrate in the crystal. It is also due in part to the F/Ar attractive potential, which is found strong enough to focus and stabilize the migration of the F product in "channels'' within the lattice, following photolysis. Classical trajectories show long-range migration of the product atoms, of the scale of 30 A(ring), following the initial impulse provided by the photodissociation. This is the first system for which such long-range impulse-induced migration was found. The results of the simulations are analyzed focusing on the role of the initial state of F2 in the crystal, on the final sites occupied by the product atoms, and on the migration dynamics. Implications of the results for mechanisms of reactions in solids are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 7708-7715 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation of an isolated IBr molecule adsorbed on an MgO(001) surface is studied theoretically. The calculations correspond to an excitation into the repulsive (Y0+) /quasibound (B 3Π0+) electronic state manifold, which may lead to the production of excited state or ground state bromine atoms. Using a quantum scattering method, we calculate the photoabsorption line shape for this process and the [Br]/[Br*] branching ratio as a function of photoexcitation wavelength. In the quantum calculations the IBr stretching was treated exactly, the in-plane librational mode was treated in the sudden approximation, and all other adsorbate and crystal modes were frozen. In addition, we studied the photodissociation process classically in order to explore the validity of freezing most of the modes. In the quantum calculations it was found that the width and intensities of the structured part of the absorption profile were greatly increased compared with the gas-phase photodissociation process. This was attributed to the stabilization of both electronic states by the molecule/surface interactions. The classical results showed that at least semiquantitatively, the crystal modes are unlikely to affect the process on the timescale pertinent to the calculated line shape.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 427-436 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A hybrid quantum/semiclassical method is proposed and applied to study realistically the dynamics of the three-fragment photodissociation process Ar...HCl+hν→Ar+H+Cl. In the method the hydrogen motion is treated by exact quantum mechanics, while the heavy atoms are described by semiclassical Gaussian wave packets. This treatment is expected to reproduce the main quantum features of the dynamics. Part of the wave packet is found to describe resonance events in which the light particle is temporarily trapped inside the Ar...Cl cage and oscillates periodically between the heavy atoms before it dissociates. Interference between frequency components of the H wave function that populate different resonance levels give rise to interesting quantum effects. Such effects appear in the angular distribution of the hydrogen fragment, which shows some diffraction oscillations, and scattering into classically forbidden regions. Quantum interferences between the resonances are also the cause of a pronounced structure of peaks in the H photofragment kinetic energy distribution (KED). Time-correlation functions of the wave functions involved are computed, and the implications for the absorption spectrum and its relation to the KED of the H atom are discussed. The results demonstrate the power and applicability of quantum/semiclassical time-dependent self-consistent-field (TDSCF) as a tool for studying the dynamics and spectroscopy of realistic molecular systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 331-335 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A theoretical study is presented on the photodissociation dynamics of Cl2 in crystalline xenon at 100 K, and within a range of pressure between 0 and 100 kbar. Temperature/pressure ensemble molecular dynamics simulations were carried out. The potentials used were accurate enough to reproduce the experimental equation of state of solid xenon. The results show that the photodissociation quantum yield varies strongly with pressure, falling from 30% at zero pressure, to 2% at 12.5 kbar, and 0% at higher pressures. These yields are in good agreement with experimental measurements. This behavior is found to be due to the strong effect of pressure on the librational (rotational) amplitudes of the Cl2 molecule and to the sharp dependence of the photodissociation yield on the molecular orientation in the reagent cage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 6728-6736 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Vibrational energies and eigenfunctions of Ar3, including some pertaining to highly excited states, are computed, and insights into their dynamical and structural properties are obtained. The method used employs the vibrational self-consistent-field (SCF) theory in hyperspherical coordinates as a first approximation. Exact results are obtained by configuration interaction, using the SCF states as an efficient basis. A focal point of the study is the effect of three-body potentials on the vibrational spectrum. Axilrod–Teller and other three-body potentials are used to examine this. It is found that the effect of three-body forces on the spectrum is substantial, and larger than effects due to uncertainties in the presently known two-body Ar–Ar potentials. This suggests that experimental spectroscopy of Ar3 may be used to determine reliable three-body forces among Ar atoms. It is also shown that the three-body double-dipole–quadrupole interaction, while less important than the Axilrod–Teller one, has a significant effect on the vibrational spectrum. Finally, a detailed analysis is made of the Ar–Ar distance distributions in the various states, of the structural distributions of Ar3, and of the properties of the wave functions. We find that the wave functions show well-ordered nodal patterns even for the highly excited large-amplitude states. Thus, these states do not correspond qualitatively to "liquid-like'' behavior of the cluster.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...