Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024
  • 1990-1994  (2)
  • 1992  (2)
  • Biochemistry and Biotechnology  (1)
  • Candida blankii  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 9 (1992), S. 109-113 
    ISSN: 1476-5535
    Keywords: Candida blankii ; Biomass ; d-Xylose ; l-Arabinose ; Acetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary All fourCandida blankii isolates evaluated for growth in simulated bagasse hemicellulose hydrolysate utilized the sugars and acetic acid completely. The utilization ofd-xylose,l-arabinose and acetic acid were delayed by the presence ofd-glucose, but after glucose depletion the other carbon sources were utilized simultaneously. The maximum specific growth rate of 0.36 h−1 and cell yield of 0.47 g cells/g carbon source assimilate compared with published results obtained withC. utilis. C. blankii appeared superior toC. utilis for biomass production from hemicellulose hydrolysate in that it utilizedl-arabinose and was capable of growth at higher temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: serine protease ; MNDO Hamiltonian ; SCF charges ; energy minimization ; dissociation constant ; inhibitor design ; catalytic mechanism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A step leading to the formation of the covalent complexes between porcine pancreatic elastase (PPE) and 7-[(alkylcarbamoyl)amino]-4-chloro-3-ethoxyisocoumarins (alkylHNCO-EICs) is the formation of the non-covalent Michaelis complex. No average structures are available for the Michaelis complexes of PPE with alkylHNCO-EICs. We present the results of an initial step in obtaining these structures and have determined kinetic constants as well. The kinetic results indicate that formation of the Michaelis complex is what differentiates the effectiveness of these inhibitors in inactivating PPE. The structural and kinetic results together suggest that the structure of the Michaelis complex is necessary for the design of potent alkylHNCO-EIC inhibitors of PPE. Two novel alkylHNCO-EICs are predicted to be the best inhibitors of this series. An alternate mechanism for serine protease inhibition is also proposed. Evidence for, and studies that may add support to, the hypothesized mechanism are discussed. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...