Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
  • 1992  (1)
Material
Years
  • 1990-1994  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 1341-1349 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Phase formation kinetics in Nb/Al multilayered thin films having overall compositions of 25, 33, 50, and 75 at. % Al have been investigated using scanning calorimetry, x-ray diffraction, and cross-sectional transmission electron microscopy. The first phase to form upon annealing the Nb/Al layered structure of all samples is the NbAl3 intermetallic. Calorimetry clearly identifies the NbAl3 formation to be a two-stage process. The first stage is the formation of a planar layer by nucleation and growth to coalescence while the second stage is the thickening of the planar layer. The large amount of heat released (and hence large volume fraction of NbAl3 formed) during the first reaction stage is consistent with heterogeneous nucleation at well-isolated sites in the Nb/Al interface. This is surprising in light of the large thermodynamic driving force expected for nucleation and suggests that the local nonequilibrium nature of the Nb/Al interface greatly reduces the driving force for nucleation. The next phase observed in samples of 25 and 33 at. % Al is the A15 superconducting phase, Nb3Al. The Nb3Al growth completes a first reaction stage similar to the NbAl3, but the subsequent thickening reaction stage is not observed without simultaneous Nb2Al growth. The high interface velocities derived from the calorimetry for formation of both NbAl3 and the A15 Nb3Al indicate that atomic transport must be by grain boundary diffusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...