Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 225-233 
    ISSN: 1617-4623
    Keywords: Protein synthesis ; Translation ; Accuracy ; Macrolide antibiotics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inaccurate protein synthesis produces unstable β-galactosidase, whose activity is rapidly lost at high temperature. Erythromycin, lincomycin, clindamycin, and celesticetin were shown to counteract the error-inducing effects of streptomycin on β-galactosidase synthesized in the antibiotic-hypersensitive Escherichia coli strain DB-11 Met −. Newly synthesized β-galactosidase was more easily inactivated by high temperatures when synthesized by bacteria partially starved for arginine, threonine, or methionine. Simultaneous treatment with erythromycin or linocomycin yielded β-galactosidase that was inactivated by high temperatures less easily than during starvation alone, an effect attributed to stimulation of ribosome editing. When synthesized in the presence of canavanine, β-galactosidase was inactivated by high temperature more easily but this effect could not be reversed by erythromycin. The first arginine in β-galactosidase occurs at residue 13, so the effect of erythromycin during arginine starvation is probably to stimulate dissociation of erroneous peptidyl-tRNAs of at least that length. Correction of errors induced by methionine starvation is probably due to stimulation of dissociation of erroneous peptidyl-tRNAs bearing peptides at least 92 residues in length. All the effects of erythromycin or the tested lincosamides on protein synthesis are probably the result of stimulating the dissociation from ribosomes of peptidyl-tRNAs that are erroneous or short.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1058-8388
    Keywords: CRABP-I ; P19 cells ; DNA methylation ; Gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The mouse cellular retinoic acid binding protein-I (CRABP-I) gene is specifically up-regulated by retinoic acid (RA) in P19 mouse embryonal carcinoma cells, and its expression in animals is spatially and temporally restricted to RA-sensitive tissues during embryonic development. This study demonstrates that, in adult mouse tissues and P19 cells where the expression of CRABP-I is detected at the basal level, the 5′- flanking region of the CRABP-I gene is hypermethylated at the C residues of all the Hpa II sites. Conversely, in mouse embryos during early stages of development when the expression of CRABP-I gene is detected at a much higher level, this region is demethylated at these Hpa II sites. In P19, enhancement on the RA-induced up-regulation of CRABP-I can be observed in cells treated with 5-azacytidine (5-AzaC) in conjunction with RA, where partial demethylation in the 5′-flanking region of CRABP-I gene is observed. Nuclear run-on experiments indicate that increased message levels of CRABP-I in P19 cells can be accounted for, at least partially, by increases in its transcription rates. The induction of retinoic acid receptor (RAR) β by RA can also be enhanced by 5-AzaC, but to a much lesser degree. In contrast, all the Hpa II sites in the structural gene portion, at least in the first two exons, are fully demethylated at the C residues. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...