Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
  • 1925-1929
  • 1994  (4)
Material
Years
  • 1990-1994  (4)
  • 1925-1929
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 3123-3129 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We deposit hydrogenated amorphous silicon (a-Si:H) on a novel "macroscopic'' trench substrate using both remote hollow cathode (HC) silane discharges and reactive magnetron sputter (RMS) deposition sources. Both methods produce state of the art optoelectronic quality a-Si:H. We analyze the surface coverage profiles in terms of the surface reaction probability β, using a Monte Carlo simulation to correct for particle reflection and loss. We also measure the deposited film quality as a function of position in the trench. For low power silane HC deposition, we find β=0.28±0.05, whereas for the RMS case β=0.97±0.05. In contrast to the prevailing thinking in the a-Si:H field, this result demonstrates that β is not universally correlated with film quality. We discuss the role of energetic particle bombardment in RMS that permits high quality films to be deposited despite the high precursor reactivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 1856-1870 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The release of molecular hydrogen from the growing surface of hydrogenated amorphous silicon films is determined using an isotope labelling technique. The results demonstrate that surface-bonded H atoms are readily abstracted by atomic hydrogen arriving from the gas phase. The films are deposited by dc reactive magnetron sputtering of a silicon target in an argon-hydrogen atmosphere. To achieve isotope labeling, we first deposit a deuterated amorphous silicon film, then commence growth of hydrogenated amorphous silicon and measure the transient release of HD and D2 from the growing surface using mass spectrometry. Release occurs when the supply of reactive hydrogen in the growth flux exceeds the incorporation rate into the film, and is observed under all experimental conditions. The net rate of H incorporation is known from ex situ measurements of film growth rate and hydrogen content. We combine the H release and incorporation data in a mass balance argument to determine the H-surface kinetics. Under conditions which produce electronically useful films, (i) 0.5–1.0 hydrogen atoms react with the growing surface per incorporated silicon atom, (ii) the near surface of the growing film contains 1–3×1015/cm2 of excess hydrogen, (iii) the dominant hydrogen release mechanism is by direct abstraction to form H2 molecules, and (iv) the kinetics of H release and incorporation can be described by constant rate coefficients. These data are supported by studies of H interactions with single-crystal silicon and amorphous carbon surfaces.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 25 (1994), S. 325-349 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract RecentR-matrix calculations of electron impact excitation rates in Ov are used to derive the emission line intensity ratios (in energy units) $$\begin{gathered} R_1 = I(2s2p^{ 3} P - 2p^{2 3} P)/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(761.1\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ R_2 = I(2s^{2 1} S_0 - 2s2p^{ 3} P_1 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(1218.4\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ \end{gathered} $$ and $$R_3 = I(2s2p^{ 1} P_1 - 2p^{2 1} S_0 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(774.5\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ )$$ as a function of electron temperature (T e) and density (N e). These results are presented as plots ofR 1 vsR 2, andR 1 vsR 3, which should allowboth N e andT e to be deduced for the Ov line emitting region of a plasma. Electron densities derived from the (R 1,R 2) and (R 1,R 3) diagrams in conjunction with observational data for several solar features obtained with the Harvard S-055 spectrometer on boardSkylab are found to be compatible, and in good agreement with values ofN e estimated from line ratios in species formed at similar electron temperatures to Ov. In addition, values ofT e determined from (R 1,R 2) and (R 1,R 3) are generally close to that expected theoretically. These results provide experimental support for the accuracy of the diagnostic calculations presented in this paper, and hence the atomic data used in their derivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...