Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2761
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: GTP cyclohydrolase I ; tyrosine hydroxylase ; tryptophan hydroxylase ; phenylalanine hydroxylase ; tetrahydrobiopterin ; liver ; adrenal medulla ; brain ; mouse ; immunocytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor of phenylalanine, tyrosine, and tryptophan hydroxylases, the enzymes that synthesize tyrosine, catecholamines (dopamine, noradrenaline, and adrenaline), and serotonin, respectively. We produced for the first time polyclonal antibody with highly sensitive immunoreactivity against an oligopeptide of rat enzyme, GFPERELPRPGA, by immunization of rabbits with the peptide conjugated to hemocyanin by glutaraldehyde. The specificity of the antibody was confirmed by Western blot analysis. Using this antibody specific for GCH, we observed strong GCH immunostaining in the liver cells, in the dopamine-, noradrenaline-, adrenaline-, or serotonin-containing cells of the brain, and in the adrenal gland of mice. Immunocytochemical studies revealed GCH to be localized in monoamine-containing perikarya in the periglomerular cells of the olfactory bulb, zona incerta, arcuate nucleus, ventral tegmental area, substantia nigra pars compacta, locus ceruleus, nucleus tractus solitarius, area postrema, and ventrolateral area of the medulla oblongata. GCH immunostaining was particularly strong in serotoninergic nuclei, such as dorsal and median raphe nuclei, nucleus raphe pallidus, and nucleus raphe magnus. By immunoelectron micoscopy, GCH-labeled cytoplasm and microtubules in the processes were observed ultrastructurally, but no staining was found in the mitochondria, and Golgi apparatus. Immunostaining was observed neither in the group D neurons that contain only aromatic amino acid decarboxylase without tyrosine hydroxylase, nor in glial cells and endothelial cells. These results indicate the abundant presence of GCH in catecholaminergic and serotoninergic neurons as well as in the adrenal medulla and liver, where BH4 is synthesized as the cofactor of tyrosine, tryptophan, and phenylalanine hydroxylases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 85 (1995), S. 2345-2350 
    ISSN: 1573-2932
    Keywords: precipitation ; throughfall ; stemflow ; acidity ; DOC ; ion balances ; Japan
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract From recent studies, we noticed that stemflow had an acidity that differed from that of precipitation or throughfall. Organic substances, supplied from the tree surface, would be one of the factors that modifies the acidity of rain. The objectives of this study were to determine the DOC concentration and to clarify the influence of dissolved organic carbon (DOC) on acidity in precipitation, throughfall and stemflow. Throughfall and stemflow were measured in sugi [Cryptomeria japonica D. Don], hinoki [Chamaecyparis obutusa Endl.] and kojii [Castanopsis cuspidata (Thumb.) Schottky.] stands. All samples were analyzed for their pH, electric conductivity (EC), major inorganic anions and cations and DOC concentration. The annual average of DOC was highest in stemflow, and that of throughfall and precipitation were one-third and one-tenth of stemflow, respectively. The averages of DOC in stemflow in two coniferous, sugi and hinoki stands, were higher than that of broadleaved kojii stand. DOC concentration was low in summer and high in winter in all stands. In Stemflow, pH and DOC were negatively correlated, while EC and DOC in stemflow were positively correlated in all stands. However in throughfall, there was no evident relationship between pH, DOC and EC. This relationship was not explained by the cause of organic acid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...