Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024
  • 1995-1999  (3)
  • 1996  (3)
  • Biochemistry and Biotechnology  (3)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 33-39 
    ISSN: 0006-3592
    Keywords: yeast ; fuel ethanol ; flocculation ; glucose conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: By recycling the contents of a 14 L fermentor through a stripping column to continuously remove ethanol and reduce product inhibition, continuous complete conversion of nutrient feed containing 600 g/L glucose was achieved in a small pilot plant. Ethanol was recovered from the carbon dioxide stripping gas in a refrigerated condenser, and the gas was reheated with steam and recycled by a blower. Productivity of ethanol in the fermentor as high as 15.8 g/L/h and condensate production of up to 10 L/day of almost 50% by volume ethanol were maintained for up to 60 days of continuous operation. Weekly washing of the column packing in situ was required to prevent loss of performance caused by attached growth of yeast cells, which restricts the gas flow rate through the stripping column. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 129-140 
    ISSN: 0006-3592
    Keywords: pathway engineering ; central metabolism ; phosphoenolpyruvate synthase ; phosphoenolpyruvate carboxykinase ; aromatic amino acid ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The rate and yield of producing a metabolite is ultimately limited by the ability to channel metabolic fluxes from central metabolism to the desired biosynthesis pathway. Redirection of central metabolism thus is essential to high-efficiency production of biochemicals. This task begins with pathway analysis, which considers only the stoichiometry of the reaction networks but not the regulatory mechanisms. An approach extended from convex analysis is used to determine the basic reaction modes, which allows the determination of optimal and suboptimal flux distributions, yield, and the dispensable sets of reactions. Genes responsible for reactions in the same dispensable set can be deleted simultaneously. This analysis serves as an initial guideline for pathway engineering. Using this analysis, we successfully constructed an Escherichia coli strain that can channel the metabolic flow from carbohydrate to the aromatic pathway with theoretical yield. This analysis also predicts a novel cycle involving phosphoenolpyruvate (PEP) carboxykinase (Pck) and the glyoxylate shunt, which can substitute the tricarboxylic acid cycle with only slightly less efficiency. However, the full cycle could not be confirmed in vivo, possibly because of the regulatory mechanism not considered in the pathway analysis.In addition to the kinetic regulation, we have obtained evidence suggesting that central metabolites are involved in specific regulons in E. coli. Overexpression of PEP-forming enzymes (phosphoenolpyruvate synthase [Pps] and Pck) stimulates the glucose consumption rate, represses the heat shock response, and negatively regulates the Ntr regulon. These results suggest that some glycolytic intermediates may serve as a signal in the regulation of the phosphotransferase system, heat shock response, and nitrogen regulation. However, the role of central metabolites in these regulations has not been determined conclusively. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0173-0835
    Keywords: Random amplified polymorphic DNA ; Oilseed rape ; Variety identification ; Brassica napus ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Before they can be marketed in the UK, newly bred varieties of crop species have to undergo a process of statutory testing, part of which involves the examination of the distinctness, uniformity and stability (DUS) of the variety. DUS testing is also used as the basis for the award of Plant Breeders' Rights. This paper examines the potential of DNA polymorphisms, amplified using arbitrary primers (RAPDs) for use in DUS testing of varieties of oilseed rape. RAPDs using suitable primers can produce high levels of discrimination (〉 95%) between varieties, although there are certain problems in gel ‘scoring’ that are only partially resolved by computerised gel scanning/evaluation techniques. Varieties of oilseed rape are also heterogeneous in their RAPD profiles using certain primers, which could cause problems in the DUS testing context. DNA profiling with RAPDs could be used for discrimination between and identification of oilseed rape varieties, but its use for DUS testing needs to be considered carefully.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...