Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1995-1999  (1)
  • 1996  (1)
Material
Years
  • 2005-2009
  • 1995-1999  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 62 (1996), S. 2181-2192 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mean permeability coefficients for CH4 and CO2 (P̄CH4 and P̄CO2) in cellulose acetate (CA, DS = 2.45) were determined at 35°C (95°F) and at pressures up to about 54 atm (800 psia). The measurements were made with pure CH4 and CO2 as well as with CH4/CO2 mixtures containing 9.7, 24.0, and 46.1 mol % CO2. In the measurements with the pure gases, P̄CH4 was found to decrease with increasing pressure, as expected from the “dual-mode” sorption model. By contrast, P̄CO2 passes through a minimum and then increases with increasing pressure, probably due to the plasticization (swelling) of CA by CO2. The values of P̄CH4 and P̄CO2 determined with the mixtures containing 9.7 and 24.0 mol % CO2 decrease with increasing total pressure; this behavior is adequately described by the extended “dual-mode” sorption model for mixtures. By contrast, the values of P̄CH4 and P̄CO2 obtained with the mixture containing 46.1 mol % CO2 pass through a minimum and then increase as the total pressure is raised, probably also due to the plasticization of CA by CO2. The CO2/CH4 selectivity (≡P̄CO2/P̄CH4) of the CA membrances decreases with increasing total pressure and, at constant pressure, decreases with increasing CO2 concentration in the feed mixture. The effects of exposing the CA membranes to high-pressure CO2 prior to the permeability measurements (“conditioning” effects) on P̄CH4 and P̄CO2 have also been studied. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...