Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Haloperidol ; Vacuous chewing movements ; Glutamate synapses ; Perforated postsynaptic density ; Striatum ; Tardive dyskinesia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Long-term treatment with the typical antipsychotic drug, haloperidol, can lead to a sometimes irreversible motor disorder, tardive dyskinesia (TD). It has been hypothesized that increased release of glutamate due to prolonged neuroleptic drug treatment may result in an excitotoxic lesion in specific neuronal populations within the basal ganglia, leading to TD. We reported that treatment with haloperidol for 1 month results in an increase in the mean percentage of striatal asymmetric synapses containing a perforated postsynaptic density (PSD) and that these synapses are glutamatergic. Using quantitative immunocytochemistry, we found that depending on how long the animals had been off haloperidol following subchronic (30d) treatment, there was either a decrease (1 day off) or increase (3–4 days off) in the density of glutamate immunolabeling within the presynaptic terminals of synapses with perforated PSDs. Using a rat model for TD, animals in the current study were treated for 1 year with haloperidol and spontaneous oral dyskinesias (i.e. vacuous chewing movements, VCMs) were recorded. In these long-term treated animals we wanted to determine if there was a correlation between glutamate function, as measured by changes in synapses with perforated PSDs and the density of nerve terminal glutamate immunoreactivity, and VCM behavior. In drug treated rats which demonstrated either a high or low rate of VCMs, there was a significant increase in the mean percentage of asymmetric synapses in the dorsolateral striatum with perforated PSDs in both haloperidol-treated groups compared to vehicle-treated rats. There was a small but significant increase in the density of glutamate immunolabeling within striatal nerve terminals of the high VCM group compared to the low VCM group. There was, however, no difference in the density of glutamate immunolabeling between the high VCM group compared to the vehicle-treated animals. One reason for this lack of difference was partially due to a significant increase in nerve terminal area within the high VCM group compared to either the low VCM- or vehicle-treated groups. The larger nerve terminal size in the high VCM group may be due to a small but sustained increase in glutamate neurotransmitter release with the ability of the terminal to maintain its supply of glutamate, while the terminals in the low VCM group showed evidence of glutamate depletion. This finding would be consistent with the hypothesis that increased glutamatergic activity may be associated with TD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...