Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1995-1999  (3)
  • 1997  (3)
Years
  • 2005-2009
  • 1995-1999  (3)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: We study the parallelization of linearly--implicit extrapolation methods for the solution of large scale systems of differential algebraic equations arising in a method of lines (MOL ) treatment of partial differential equations. In our approach we combine a slightly overlapping domain decomposi tion together with a polynomial block Neumann preconditioner. Through the explicit computation of the matrix products of the pre conditioner and the system matrix a significant gain in overall efficiency is achieved for medium--sized problems. The parallel algorithm exhibits a good scalability up to 32 proces sors on a Cray T3E. Preliminary results for computations on a workstation cluster are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: We study the parallelization of linearly--implicit extrapolation codes for the solution of large scale PDE systems and differential algebraic equations on distributed memory machines. The main advantage of these algorithms is that they enable adapativity both in time and space. Additive Krylov--Schwarz methods yield high parallel perfomance for such extrapolation methods. Our approach combines a slightly overlapping domain decomposition together with a polynomial block Neumann preconditioner and a reduced system technique. Furthermore we get important advantages through the explicit computation of the matrix--products of the preconditioner and the matrix of the linear system. The parallel algorithms exhibit scalability up to 64 processors already for medium--sized test problems. We show that the codes are really efficient in large application systems for chemical engineering problems.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: The paper analyzes a recently proposed iterative error minimizing method for the solution of linear systems. Sufficient and necessary conditions for convergence are studied, which show that the method essentially requires normal matrices. An efficient implementation similar to GMRES has been worked out in detail. Numerical tests on general non--normal matrices, of course, indicate that this approach is not competitive with GMRES. Summarizing, if error minimizing is important, one should rather choose CGNE. A computational niche for GMERR might be problems, where normal but non--symmetric matrices occur, like dissipative quantum mechanics.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...