Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1437-160X
    Keywords: Key words Platelet-derived growth factor ; Total hip replacement ; Synovial-like membrane ; Aseptic loosening
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aseptic loosening is the predominant cause of total hip implant failure. It has been assumed that a layer or membrane, containing macrophages, fibroblasts and vascular endothelial cells, of synovial-like tissue develops at the implant-to-bone interface almost invariably and, with time, somehow leads to loosening of the components from the surrounding bone. These cells produce a variety of cytokines and proteolytic enzymes which stimulate bone resorption. Platelet derived growth factor (PDGF) may be one of the cytokines which stimulate bone resorption and contribute to aseptic loosening in total hip replacement (THR). Synovial-like membrane from the implant or cement-to-bone interface (n=10) and pseudocapsule (n=10) were obtained from ten patients operated on for aseptic loosening of THR. As a control, nine samples of connective tissues were obtained from patients who had mandibular or maxillary fractures fixed with bone implant. The avidin-biotin-peroxidase complex (ABC) method with polyclonal rabbit anti-human IgG against the A-chain and B-chain of PDGF was used for staining. ABC-alkaline phosphatase-anti-alkaline-phosphatase double staining with monoclonal mouse anti-human fibroblast IgG1 and CD68 antibodies was used to ascertain the cellular origin of PDGF. Results of the PDGF staining were quantitated by a semi-automatic VIDAS image analysis system. The PDGF-A and PDGF-B chain containing cells were found in all periprosthetic tissues, in particular in macrophages with phagocytosed particulate debris, but to some extent also in fibroblasts and in endothelial cells. The numbers of PDGF-A and PDGF-B chain positive cells per mm2 in synovial-like interface membrane (1881±486 and 1877±214) and pseudocapsule (1786±236 and 1676±152) were higher (P〈0.01) around loose THR than in control tissue (821±112 and 467±150), respectively. The results of the present study suggest that PDGF is preferably expressed by macrophages, which to an increased extent produce it in the synovial-like interface membrane and pseudocapsular synovial-like membrane. Because of its role in bone resorption, it may well play a role in periprosthetic bone loss and aseptic loosening and deserves more detailed study as a mediator and potential target in the modulation or prevention of loosening of THR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-203X
    Keywords: Key words Chinese cabbage (Brassica campestris L. ssp. pekinensis) ; Genotype ; Cotyledon culture ; AgNO3 ; Ethylene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Medium conditions for reliable shoot regeneration from cotyledonary explants of Chinese cabbage were examined. Maximum shoot regeneration was obtained in the presence of 5 mg/l BA and 0.5 mg/l NAA. Shoot induction was further improved by the addition of AgNO3 as well as higher concentrations (1.2–1.6%) of agar in the regeneration medium. When 123 genotypes were tested, a large variation in regeneration frequency was observed, ranging from 95% to 0%. Shoot regeneration frequency was not related to origin and days to maturity of the genotypes. Ethylene production from cultured explants seemed to play an important role in shoot regeneration. Explants of highly responsive genotypes or if cultured on the medium solidified with a higher concentration of agar generally showed low levels of ethylene production. However, AgNO3, which also enhanced shoot induction, resulted in an increase in ethylene production. The possible interaction between ethylene and shoot regeneration is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 175-190 
    ISSN: 0006-3592
    Keywords: protein-based polymers ; inverse temperature transitions ; hydrophobic-induced pKa shifts ; waters of hydrophobic hydration ; five axioms for protein engineering; microwave dielectric relaxation ; a universal mechanism for biological energy conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Metabolism is the conversion of available energy sources to those energy forms required for sustaining and propagating living organisms; this is simply biological energy conversion. Proteins are the machines of metabolism; they are the engines of motility and the other machines that interconvert energy forms not involving motion. Accordingly, metabolic engineering becomes the use of natural protein-based machines for the good of society. In addition, metabolic engineering can utilize the principles, whereby proteins function, to design new protein-based machines to fulfill roles for society that proteins have never been called upon throughout evolution to fulfill.This article presents arguments for a universal mechanism whereby proteins perform their diverse energy conversions; it begins with background information, and then asserts a set of five axioms for protein folding, assembly, and function and for protein engineering. The key process is the hydrophobic folding and assembly transition exhibited by properly balanced amphiphilic protein sequences. The fundamental molecular process is the competition for hydration between hydrophobic and polar, e.g., charged, residues. This competition determines Tt, the onset temperature for the hydrophobic folding and assembly transition, Nhh, the numbers of waters of hydrophobic hydration, and the pKa of ionizable functions.Reported acid-base titrations and pH dependence of microwave dielectric relaxation data simultaneously demonstrate the interdependence of Tt, Nhh and the pKa using a series of microbially prepared protein-based poly(30mers) with one glutamic acid residue per 30mer and with an increasing number of more hydrophobic phenylalanine residues replacing valine residues. Also, reduction of nicotinamides and flavins is shown to lower Tt, i.e., to increase hydrophobicity.Furthermore, the argument is presented, and related to an extended Henderson-Hasselbalch equation, wherein reduction of nicotinamides represents an increase in hydrophobicity and resulting hydrophobic-induced pKa shifts become the basis for understanding a primary energy conversion (proton transport) process of mitochondria. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:175-190, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...