Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1995-1999  (3)
  • 1985-1989
  • 1998  (3)
  • Chemistry  (1)
  • Genotype  (1)
  • Key wordsRhodiola sachalinensis  (1)
  • 1
    ISSN: 1432-203X
    Schlagwort(e): Key wordsRhodiola sachalinensis ; Salidroside ; Elicitor ; Precursor
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Strategies of elicitation and precursor feeding were applied to improve salidroside production in cell suspension cultures of Rhodiola sachalinensis. Of the seven elicitors examined, that extracted from Aspergillus niger was the most effective, increasing the salidroside content by five-fold when added on the day of inoculation 40 mg carbohydrate is medium. Three possible precursors for salidroside synthesis, l-phenylalanine, l-tyrosol and l-tyrosine were added to the cultures. A high content of salidroside (1.440%) was attained with an initial l-tyrosol concentration of 0.5 mm in the medium. Combined application of the two strategies resulted in a significantly high salidroside content of 1.734%, corresponding to a salidroside yield of 200 mg/l.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-203X
    Schlagwort(e): Key words Chinese cabbage (Brassica campestris L. ssp. pekinensis) ; Genotype ; Cotyledon culture ; AgNO3 ; Ethylene
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Medium conditions for reliable shoot regeneration from cotyledonary explants of Chinese cabbage were examined. Maximum shoot regeneration was obtained in the presence of 5 mg/l BA and 0.5 mg/l NAA. Shoot induction was further improved by the addition of AgNO3 as well as higher concentrations (1.2–1.6%) of agar in the regeneration medium. When 123 genotypes were tested, a large variation in regeneration frequency was observed, ranging from 95% to 0%. Shoot regeneration frequency was not related to origin and days to maturity of the genotypes. Ethylene production from cultured explants seemed to play an important role in shoot regeneration. Explants of highly responsive genotypes or if cultured on the medium solidified with a higher concentration of agar generally showed low levels of ethylene production. However, AgNO3, which also enhanced shoot induction, resulted in an increase in ethylene production. The possible interaction between ethylene and shoot regeneration is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 175-190 
    ISSN: 0006-3592
    Schlagwort(e): protein-based polymers ; inverse temperature transitions ; hydrophobic-induced pKa shifts ; waters of hydrophobic hydration ; five axioms for protein engineering; microwave dielectric relaxation ; a universal mechanism for biological energy conversion ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Metabolism is the conversion of available energy sources to those energy forms required for sustaining and propagating living organisms; this is simply biological energy conversion. Proteins are the machines of metabolism; they are the engines of motility and the other machines that interconvert energy forms not involving motion. Accordingly, metabolic engineering becomes the use of natural protein-based machines for the good of society. In addition, metabolic engineering can utilize the principles, whereby proteins function, to design new protein-based machines to fulfill roles for society that proteins have never been called upon throughout evolution to fulfill.This article presents arguments for a universal mechanism whereby proteins perform their diverse energy conversions; it begins with background information, and then asserts a set of five axioms for protein folding, assembly, and function and for protein engineering. The key process is the hydrophobic folding and assembly transition exhibited by properly balanced amphiphilic protein sequences. The fundamental molecular process is the competition for hydration between hydrophobic and polar, e.g., charged, residues. This competition determines Tt, the onset temperature for the hydrophobic folding and assembly transition, Nhh, the numbers of waters of hydrophobic hydration, and the pKa of ionizable functions.Reported acid-base titrations and pH dependence of microwave dielectric relaxation data simultaneously demonstrate the interdependence of Tt, Nhh and the pKa using a series of microbially prepared protein-based poly(30mers) with one glutamic acid residue per 30mer and with an increasing number of more hydrophobic phenylalanine residues replacing valine residues. Also, reduction of nicotinamides and flavins is shown to lower Tt, i.e., to increase hydrophobicity.Furthermore, the argument is presented, and related to an extended Henderson-Hasselbalch equation, wherein reduction of nicotinamides represents an increase in hydrophobicity and resulting hydrophobic-induced pKa shifts become the basis for understanding a primary energy conversion (proton transport) process of mitochondria. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:175-190, 1998.
    Zusätzliches Material: 11 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...