Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1930-1934
  • 1998  (2)
  • Dorsoventral abdominal vibration  (1)
  • Engineering  (1)
  • Malondialdehyde
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 42 (1998), S. 23-36 
    ISSN: 1432-0762
    Keywords: Key words Honey bee ; Shaking signal ; Dorsoventral abdominal vibration ; Modulatory communication ; Signal design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study explores the meaning and functional design of a modulatory communication signal, the honey bee shaking signal, by addressing five questions: (I) who shakes, (II) when do they shake, (III) where do they shake, (IV) how do receivers respond to shaking, and (V) what conditions trigger shaking. Several results confirm the work of Schneider (1987) and Schneider et al. (1986a): (I) most shakers were foragers (at least 83%); (II) shaking exhibited a consistent temporal pattern with bees producing the most signals in the morning (0810–1150 hours) just prior to a peak in waggle dancing activity; and (IV) bees moved faster (by 75%) after receiving a shaking signal. However, this study differs from previous work by providing a long-term, temporal, spatial, and vector analysis of individual shaker behavior. (III) Bees producing shaking signals walked and delivered signals in all areas of the hive, but produced the most shaking signals directly above the waggle dance floor. (IV) Bees responded to the signal by changing their direction of movement. Prior to receiving a signal, bees selected from the waggle dance floor moved, on average, towards the hive exit. After receiving a signal, some bees continued moving towards the exit but others moved directly away from the exit. During equivalent observation periods, non-shaken bees exhibited a strong tendency to move towards the hive exit. (V) Renewed foraging activity after food dearth triggered shaking signals, and, the level of shaking is positively correlated with the duration of food dearth. However, shaking signal levels also increased in the morning before foraging had begun and in the late afternoon after foraging had ceased. This spontaneous afternoon peak has not previously been reported. The shaking signal consequently appears to convey the general message “reallocate labor to different activities” with receiver context specifying a more precise meaning. In the context of foraging, the shaking signal appears to activate (and perhaps deactivate) colony foraging preparations. The generally weak response elicited by modulatory signals such as the shaking signal may result from a high receiver response threshold which allows the receiver to integrate multiple sources of information and which thereby increases the probability that receiver actions will be appropriate to colony needs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 42 (1998), S. 1215-1229 
    ISSN: 0029-5981
    Keywords: boundary element method ; fast multipole method ; many-particle problem ; linear elasticity ; iterative solution strategy ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A boundary element method for solving three-dimensional linear elasticity problems that involve a large number of particles embedded in a binder is introduced. The proposed method relies on an iterative solution strategy in which matrix-vector multiplication is performed with the fast multipole method. As a result the method is capable of solving problems with N unknowns using only O(N) memory and O(N) operations. Results are given for problems with hundreds of particles in which N=O(105). © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...