Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Key words Schwann cell ; Apoptosis ; Supernumerary cells ; Internodal shortening ; Tellurium neuropathy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have used an experimental model of tellurium(Te)-induced demyelinating neuropathy in the rat to study cellular mechanisms involved in regulating Schwann cell (SC) numbers during remyelination. Starting at postnatal day 21, weaned rats were fed a diet containing 1.1% elemental Te. Following 7 days of Te treatment and at several time points of post-tellurium treatment (PTe), the animals were processed for ultrastructural analysis, SC nuclei quantification and teased fibre preparations. It is well-established that Te induces a transient demyelinating/remyelinating sequence in sciatic nerves. The loss of the myelin sheath in this neuropathy produces active proliferation and overproduction of immature SCs. By electron microscopy analysis most mitotic SCs were located along demyelinated segments. Quantitative determination of SC nuclei per transverse section of sciatic nerve revealed a dramatic increase of SCs at 2 days PTe relative to control nerves. The number of SC nuclei then decreased progressively during the long-term period of recovery studied (330 days PTe). In Te-treated rats, SCs undergoing cell death were regularly found within the nerve fibre compartment, especially on demyelinated segments. Dying cells exhibited morphological features of apoptosis and appeared enclosed by lamellar processes of adjacent healthy SCs in extracellular compartments. Both healthy immature SCs and endoneurial macrophages were involved in the phagocytosis of apoptotic SCs. Particularly during remyelination, supernumerary endoneurial SCs were observed surrounding myelinated fibres. These cells progressively became atrophic with a morphological phenotype similar so that of “onion bulb” cells. On the other hand, teased fibre measurements revealed a remarkable permanent internodal shortening in remyelinated fibres from Te-treated sciatic nerves. These results indicate that a portion of redundant immature SCs are susceptible to elimination by apoptosis. However, other distinct biological mechanisms such as the persistence of supernumerary SCs in the endoneurium and the shortening of internodal lengths are also involved in regulating SC numbers during the remyelination stage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Key words Cerebellar cortex ; Apoptosis ; Brain macrophages ; Proliferating cell nuclear antigen ; Astroglial plasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The morphology, organization and expression of proliferating cell nuclear antigen (PCNA) and the cytoskeletal proteins vimentin and GFAP in immature Bergmann glial cells were studied after a developmental injury induced by a single dose of the cytotoxic agent methylazoxymethanol (MAM) administered on postnatal day 5. This drug, which produces cell death of cerebellar granule cell precursors, did not induce apoptosis in Bergmann glial cells, which are in a proliferative stage. After MAM treatment, PCNA staining showed a severe depletion of PCNA-positive granule cell precursors, whereas PCNA-positive Bergmann glial nuclei in the Purkinje cell layer were preserved. Moreover, the quantitative analysis revealed an increase in the density of both Purkinje cells and PCNA-positive Bergmann glial cells per mm of Purkinje cell layer in MAM-treated rats relative to age-matched controls, but the numerical ratio between these two cell populations remains invariable after MAM treatment. Vimentin and GFAP immunocytochemistry revealed a reinforcement of the Bergmann glial palisade with overexpression of both proteins and thicker immunoreactive glial processes in MAM-treated rats. At the ultrastructural level, Bergmann glial processes closely associated with dying cells in different stages of apopotosis were observed. Frequently, these processes enclosed dying cells in extracellular compartments. Furthermore, phagosomes containing apoptotic bodies were found in Bergmann fibers of MAM-treated rats. These data indicate that the cell death of granule cell precursors triggers a reactive response in immature Bergmann glia. We suggest that this response reflects the plasticity of Bergmann glia to control the neuronal microenvironment in the maturing molecular layer, protecting healthy cells against the potentially harmful contents of dying cells. In situ labeling of cell death with the TUNEL method revealed that the cell death of granule cell precursors is of the apoptotic type. The participation of ameboid microglial cells in the phagocytosis of apoptotic cells was shown with tomato lectin histochemistry and ultrastructual analysis. Moreover, the presence of mitosis in this microglial population demonstrates its proliferative activity in regions of extensive cell death.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Administration of hypertonic NaCl solutions by intraperitoneal injection evokes a transient expression of immediate-early genes in the hypothalamic magnocellular neurons of supraoptic nuclei (SON), which is followed by an upregulation of arginine vasopressin synthesis and a general increase in cellular metabolic activity. Here we have analysed the changes that occur in the nucleus of SON neurons during the period of transient Fos expression after injection of hypertonic saline. Within the first 30 minutes after injection, the nuclei become significantly smaller, contain more condensed chromatin and incorporate less 3H-uridine than the controls. By 12 hours these effects are reverting and at 24 hours the nuclei are already more active than the controls. Additionally, we observe an initial decrease in the number of coiled bodies per nucleus within the first 2 hours, followed by a 3-fold increase at 24 hours after injection. As coiled bodies are transcription-dependent subnuclear 'organelles', these results further support the view that injection of hypertonic saline causes a transient inhibition of nuclear activity. Our data show that SON neurons respond to acute osmotic/stress stimuli first with inhibition and then with activation of gene expression. Importantly, inhibition of transcriptional activity occurs simultaneously with maximal accumulation of Fos protein in the nucleus, raising the possibility that activation of c-fos expression may cause repression of target genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...