Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004
  • 1995-1999  (3)
  • 1985-1989
  • 1999  (3)
Material
Years
  • 2000-2004
  • 1995-1999  (3)
  • 1985-1989
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 1765-1767 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Room temperature photoreflectance (PR) was used to investigate the surface state densities of GaAs and In0.52Al0.48As surface intrinsic-n+ structures. The built-in electric field and thus the surface barrier height are evaluated using the observed Franz–Keldysh oscillations in the PR spectra. Based on the thermionic emission theory and current-transport theory, the surface state density as well as the pinning position of the Fermi level can be determined from the dependence of the surface barrier height on the pump beam intensity. Even though this method is significantly simpler, easier to perform, and time efficient compared with other approaches, the results obtained agree with the literature. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 2467-2469 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This work uses photoreflectance to investigate the band gap, built-in electric field, and surface Fermi level of a series of lattice-matched In0.52Al0.48As surface intrinsic-n+ structures having different undoped layer thickness. Experimental results indicate that the surface Fermi level is weakly pinned. By converting the dependence of the built-in electric field on undoped layer thickness into the dependence of surface state density on the surface Fermi level, this study defines the energy spectrum of the surface state density of InAlAs surface using a Gaussian distribution function. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1438-2199
    Keywords: Amino acids ; Protein ; arginine methyltransferase ; Inhibitors ; Ginseng extract ; Arginine derivatives ; Basic amino acids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Protein-arginine N-methyltransferase (protein methylase I) catalyzes methylation of arginyl residues on substrate protein posttranslationally utilizing S-adenosyl-L-methionine as the methyl donor and yields NG-methylarginine residues. Arginyl-fructose and arginyl-fructosyl-glucose from Korean red ginseng were found to inhibit protein methylase I activity in vitro. This inhibitory activity was shown to be due to arginyl moiety in the molecules, rather than that of carbohydrates. Several basic amino acids as well as polyamines were also found to inhibit protein methylase I activity. Interestingly, the intensity of the inhibitory activity was correlated with the number of amino-group in polyamines, thus, in the order of spermine 〉 spermidine 〉 putrescine 〉 agmatine-sulfate, with IC50 at approximately 15 mM, 25 mM, 35 mM, and 50 mM, respectively. On the other hand, neutral amino acids or NaCI did not inhibit the enzyme activity. Lineweaver-Burk plot analysis of the protein methylase I activity in the presence of arginine and spermidine indicated that the inhibition was competitive in nature in respect to protein substrate, with the Ki values of 24.8 mM and 11.5 mM, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...