Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1999  (3)
  • ROESY  (2)
  • Ethylene  (1)
  • Bayesian inference
  • 1
    ISSN: 1432-2048
    Keywords: Key words:Arabidopsis (GTP binding) ; Cytokinin ; Ethylene ; Protein Phosphorylation ; GTP-binding proteins (small)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Binding of [α-32P]guanosine 5′-triphosphate ([α-32P]GTP) has been demonstrated in a Triton X-100-solubilised membrane fraction from leaves of Arabidopsis thaliana (L.) Heynh. Binding was stimulated by 1 h pre-treatment of leaves with ethylene and this effect was antagonised by the inclusion of N6-benzyladenine in the medium used for homogenisation. The ethylene-insensitive mutants eti5 and etr showed contrasting responses. In eti5 the constitutive level of GTP binding was higher than in the wild type whereas in etr the level was much lower. Neither ethylene nor cytokinin affected GTP binding in the mutants. The GTP-binding activity was localised in two bands at 22 and 25 kDa, both of which were immunoprecipitated by anti-pan-Ras antibodies, indicating that the activity is due to small GTP-binding proteins. In a similar membrane fraction, ethylene was shown to increase protein phosphorylation and benzyladenine antagonised this effect. In eti5 the constitutive level of protein phosphorylation was higher than in the wild type, but benzyladenine increased activity substantially while ethylene was without effect. In etr, protein phosphorylation was lower than in the wild type, ethylene was without effect, but cytokinin increased activity. A protein of Mr 17 kDa was detected on gels using antibodies to nucleoside diphosphate kinase. Phosphorylation of this protein was upregulated by ethylene but nucleoside diphosphate kinase activity was unaffected. The results are compared with the effect of the two hormones on the senescence of detached leaves and discussed in relation to pathways proposed for ethylene signal transduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 6 (1999), S. 395-402 
    ISSN: 1573-3904
    Keywords: cFP ; conformational analysis ; dynamics simulations ; EP24.15 ; ROESY ; thimet oligopeptidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The enzyme thimet oligopeptidase (EC3.4.24.15, EP24.15) is responsible for the hydrolysis of a number of neuropeptides. Despite much research examining its substrate specificity, little is known about the conformational requirements of its active site. We have used 1D1H and 2D TOCSY NMR experiments to assign the proton resonances of the EP24.15 inhibitor,N-[1-(R, S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), and 2D ROESY NMR to investigate whether cFP exhibits any conformational preferences in CD3OD and in aqueous CD3OD. Molecular modelling of charged cFP in the gaseous phase generated a number of conformations that were consistent with the NMR data obtained in CD3OD. Analogous modelling on the uncharged cFP did not result in conformations consistent with any of the NMR data, but did suggest that, under non-polar conditions, cFP could adopt a hairpin conformation which would allow simultaneous coordination of the two carboxyl groups of cFP to the zinc ion in the active site of EP24.15.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 6 (1999), S. 395-402 
    ISSN: 1573-3904
    Keywords: cFP ; conformational analysis ; dynamicssimulations ; EP24.15 ; ROESY ; thimet oligopeptidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The enzyme thimet oligopeptidase (EC3.4.24.15, EP24.15) is responsible for the hydrolysis of a number of neuropeptides. Despite much research examining its substrate specificity, little is known about the conformational requirements of its active site. We have used 1D 1H and 2D TOCSY NMR experiments to assign the proton resonances of the EP24.15 inhibitor, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), and 2D ROESY NMR to investigate whether cFP exhibits any conformational preferences in CD3OD and in aqueous CD3OD. Molecular modelling of charged cFP in the gaseous phase generated a number of conformations that were consistent with the NMR data obtained in CD3OD. Analogous modelling on the uncharged cFP did not result in conformations consistent with any of the NMR data, but did suggest that, under non-polar conditions, cFP could adopt a hairpin conformation which would allow simultaneous coordination of the two carboxyl groups of cFP to the zinc ion in the active site of EP24.15.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...