Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 2000  (2)
Material
Years
  • 2000-2004  (2)
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies implicating dendritic protein synthesis in synaptic plasticity have focused attention on identifying components of the molecular machinery involved in processing dendritic RNA. Although Translin was originally identified as a protein capable of binding single-stranded DNA, subsequent studies have demonstrated that it also binds RNAin vitro. Because previous studies indicated that Translin-containing RNA/single-stranded DNA binding complexes are highly enriched in brain, we and others have proposed that it may be involved in dendritic RNA processing. To assess this possibility, we have conducted studies aimed at defining the localization of Translin and its partner protein, Trax, in brain. In situ hybridization studies demonstrated that both Translin and Trax are expressed in neurons with prominent staining apparent in cerebellar Purkinje cells and neuronal layers of the hippocampus. Subcellular fractionation studies demonstrated that both Translin and Trax are highly enriched in the cytoplasmic fraction compared with nuclear extracts. Furthermore, immunohistochemical studies with Translin antibodies revealed prominent staining in Purkinje neuron cell bodies that extends into proximal and distal dendrites. A similar pattern of somatodendritic localization was observed in hippocampal and neocortical pyramidal neurons. These findings demonstrate that Translin is expressed in neuronal dendrites and therefore support the hypothesis that the Translin/Trax complex may be involved in dendritic RNA processing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 75 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies indicate that the Egr family of transcription regulatory factors plays a key role in nervous system development and plasticity. In prior studies, we demonstrated that multiple isoforms of the Egr3 transcription regulatory factor are expressed in brain and appear to be generated by use of alternative translation start sites. To compare the functional activity of these isoforms, we have examined their ability to stimulate transcription of a luciferase reporter construct driven by the Egr response element. Analysis of a series of N-terminal truncation constructs indicates that Egr3 contains two distinct activation domains: one located in the segment upstream of Met106, the start site of the major truncated isoform Egr3β, and the other located C-terminal to all of the alternative translation start sites used to generate Egr3 isoforms detected in brain. We confirmed this inference by demonstrating that each of these segments is able to drive transcription when fused to the GAL4 DNA binding domain. Taken together, these studies indicate that the internal translation start sites present in Egr3 are used to generate Egr3 isoforms lacking the activation domain located N-terminal to Met106.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...