Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3)
  • 2015-2019
  • 2010-2014  (13)
  • 2022  (3)
  • 2013  (13)
Source
Years
  • 2020-2023  (3)
  • 2015-2019
  • 2010-2014  (13)
  • 2020-2024  (7)
Year
Language
  • 11
    Publication Date: 2020-08-05
    Description: The analysis of random instances of a combinatorial optimization problem, especially their optimal values, can provide a better insight into its structure. Such an extensive analysis was theoretically and practically done for the assignment problem ("random assignment problem") and several of its generalizations. For a recent generalization of the assignment problem to bipartite hypergraphs, the hypergraph assignment problem, such results do not exist so far. We consider a random version of the hypergraph assignment problem for the simplest possible complete bipartite hypergraphs. They have only edges and proper hyperedges of size four and follow a special structure, but the hypergraph assignment problem for this type of hypergraphs is, however, already NP-hard. It can be viewed as a combination of two assignment problems. For random hyperedge costs exponentially i.i.d. with mean 1 we show computational results that suggest that the expected value of minimum cost hyperassignments converges to some value around 1.05 with a small standard deviation. The computational results also suggest that the optimal value is most probably attained with half of the maximum possible number of proper hyperedges. The main result of this paper is the proof that the expected value of a minimum cost hyperassignment which uses exactly half the possible maximum number of proper hyperedges if the vertex number tends to infinity lies between 0.3718 and 1.8310 when hyperedge costs are exponentially i.i.d. with mean 1.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-12-15
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-03-30
    Description: We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-05
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-11-24
    Description: Finding connected subgraphs of maximum weight subject to additional constraints on the subgraphs is a common (sub)problem in many applications. In this paper, we study the Maximum Weight Connected Subgraph Problem with a given root node and a lower and upper capacity constraint on the chosen subgraph. In addition, the nodes of the input graph are colored blue and red, and the chosen subgraph is required to be balanced regarding its cumulated blue and red weight. This problem arises as an essential subproblem in district planning applications. We show that the problem is NP-hard and give an integer programming formulation. By exploiting the capacity and balancing condition, we develop a powerful reduction technique that is able to significantly shrink the problem size. In addition, we propose a method to strengthen the LP relaxation of our formulation by identifying conflict pairs, i.e., nodes that cannot be both part of a chosen subgraph. Our computational study confirms the positive impact of the new preprocessing technique and of the proposed conflict cuts.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-12-01
    Description: We consider the line planning problem in public transport in the Parametric City, an idealized model that captures typical scenarios by a (small) number of parameters. The Parametric City is rotation symmetric, but optimal line plans are not always symmetric. This raises the question to quantify the symmetry gap between the best symmetric and the overall best solution. For our analysis, we formulate the line planning problem as a mixed integer linear program, that can be solved in polynomial time if the solutions are forced to be symmetric. The symmetry gap is provably small when a specific Parametric City parameter is fixed, and we give an approximation algorithm for line planning in the Parametric City in this case. While the symmetry gap can be arbitrarily large in general, we show that symmetric line plans are a good choice in most practical situations.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...