Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 2020-2023
  • 2015-2019
  • 2010-2014
  • 1990-1994
  • 2024  (4)
Years
  • 2020-2024  (4)
  • 2020-2023
  • 2015-2019
  • 2010-2014
  • 1990-1994
Year
Language
  • 1
    Publication Date: 2024-02-16
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-19
    Description: We study the solution of the rolling stock rotation problem with predictive maintenance (RSRP-PdM) by an iterative refinement approach that is based on a state-expanded event-graph. In this graph, the states are parameters of a failure distribution, and paths correspond to vehicle rotations with associated health state approximations. An optimal set of paths including maintenance can be computed by solving an integer linear program. Afterwards, the graph is refined and the procedure repeated. An associated linear program gives rise to a lower bound that can be used to determine the solution quality. Computational results for six instances derived from real-world timetables of a German railway company are presented. The results show the effectiveness of the approach and the quality of the solutions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-15
    Description: The rolling stock rotation problem with predictive maintenance (RSRP-PdM) involves the assignment of trips to a fleet of vehicles with integrated maintenance scheduling based on the predicted failure probability of the vehicles. These probabilities are determined by the health states of the vehicles, which are considered to be random variables distributed by a parameterized family of probability distribution functions. During the operation of the trips, the corresponding parameters get updated. In this article, we present a dual solution approach for RSRP-PdM and generalize a linear programming based lower bound for this problem to families of probability distribution functions with more than one parameter. For this purpose, we define a rounding function that allows for a consistent underestimation of the parameters and model the problem by a state-expanded event-graph in which the possible states are restricted to a discrete set. This induces a flow problem that is solved by an integer linear program. We show that the iterative refinement of the underlying discretization leads to solutions that converge from below to an optimal solution of the original instance. Thus, the linear relaxation of the considered integer linear program results in a lower bound for RSRP-PdM. Finally, we report on the results of computational experiments conducted on a library of test instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-27
    Description: We study a complex planning and scheduling problem arising from the build-up process of air cargo pallets and containers, collectively referred to as unit load devices (ULD), in which ULDs must be assigned to workstations for loading. Since air freight usually becomes available gradually along the planning horizon, ULD build-ups must be scheduled neither too early to avoid underutilizing ULD capacity, nor too late to avoid resource conflicts with other flights. Whenever possible, ULDs should be built up in batches, thereby giving ground handlers more freedom to rearrange cargo and utilize the ULD's capacity efficiently. The resulting scheduling problem has an intricate cost function and produces large time-expanded models, especially for longer planning horizons. We propose a logic-based Benders decomposition approach that assigns batches to time intervals and workstations in the master problem, while the actual schedule is decided in a subproblem. By choosing appropriate intervals, the subproblem becomes a feasibility problem that decomposes over the workstations. Additionally, the similarity of many batches is exploited by a strengthening procedure for no-good cuts. We benchmark our approach against a time-expanded MIP formulation from the literature on a publicly available data set. It solves 15% more instances to optimality and decreases run times by more than 50% in the geometric mean. This improvement is especially pronounced for longer planning horizons of up to one week, where the Benders approach solves over 50% instances more than the baseline
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...