Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Years
Year
Language
  • 1
    Publication Date: 2020-11-27
    Description: Lattice-based cryptography has received attention as a next-generation encryption technique, because it is believed to be secure against attacks by classical and quantum computers. Its essential security depends on the hardness of solving the shortest vector problem (SVP). In the cryptography, to determine security levels, it is becoming significantly more important to estimate the hardness of the SVP by high-performance computing. In this study, we develop the world’s first distributed and asynchronous parallel SVP solver, the MAssively Parallel solver for SVP (MAP-SVP). It can parallelize algorithms for solving the SVP by applying the Ubiquity Generator framework, which is a generic framework for branch-and-bound algorithms. The MAP-SVP is suitable for massive-scale parallelization, owing to its small memory footprint, low communication overhead, and rapid checkpoint and restart mechanisms. We demonstrate its performance and scalability of the MAP-SVP by using up to 100,032 cores to solve instances of the Darmstadt SVP Challenge.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-09
    Description: Päschke et al. (J Fluid Mech, 2012) studied the nonlinear dynamics of strongly tilted vortices subject to asymmetric diabatic heating by asymptotic methods. They found, inter alia, that an azimuthal Fourier mode 1 heating pattern can intensify or attenuate such a vortex depending on the relative orientation of the tilt and the heating asymmetries. The theory originally addressed the gradient wind regime which, asymptotically speaking, corresponds to vortex Rossby numbers of order unity in the limit. Formally, this restricts the applicability of the theory to rather weak vortices. It is shown below that said theory is, in contrast, uniformly valid for vanishing Coriolis parameter and thus applicable to vortices up to low hurricane strengths. An extended discussion of the asymptotics as regards their physical interpretation and their implications for the overall vortex dynamics is also provided in this context. The paper’s second contribution is a series of three-dimensional numerical simulations examining the effect of different orientations of dipolar diabatic heating on idealized tropical cyclones. Comparisons with numerical solutions of the asymptotic equations yield evidence that supports the original theoretical predictions of Päschke et al. In addition, the influence of asymmetric diabatic heating on the time evolution of the vortex centerline is further analyzed, and a steering mechanism that depends on the orientation of the heating dipole is revealed. Finally, the steering mechanism is traced back to the correlation of dipolar perturbations of potential temperature, induced by the vortex tilt, and vertical velocity, for which diabatic heating not necessarily needs to be responsible, but which may have other origins.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...