Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (10)
  • 2015-2019  (3)
Source
Years
Year
Language
  • 11
    Publication Date: 2024-04-05
    Description: This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-05-06
    Description: The multi-grid reaction-diffusion master equation (mgRDME) provides a generalization of stochastic compartment-based reaction-diffusion modelling described by the standard reaction-diffusion master equation (RDME). By enabling different resolutions on lattices for biochemical species with different diffusion constants, the mgRDME approach improves both accuracy and efficiency of compartment-based reaction-diffusion simulations. The mgRDME framework is examined through its application to morphogen gradient formation in stochastic reaction-diffusion scenarios, using both an analytically tractable first-order reaction network and a model with a second-order reaction. The results obtained by the mgRDME modelling are compared with the standard RDME model and with the (more detailed) particle-based Brownian dynamics simulations. The dependence of error and numerical cost on the compartment sizes is defined and investigated through a multi-objective optimization problem.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-05-07
    Description: This paper explores memory mechanisms in complex socio-technical systems, using a mobility demand model as an example case. We simplified a large-scale agent-based mobility model into a Markov process and discover that the mobility decision process is non-Markovian. This is due to its dependence on the system’s history, including social structure and local infrastructure, which evolve based on prior mobility decisions. To make the process Markovian, we extend the state space by incorporating two history-dependent components. Although our model is a very much reduced version of the original one, it remains too complex for the application of usual analytic methods. Instead, we employ simulations to examine the functionalities of the two history-dependent components. We think that the structure of the analyzed stochastic process is exemplary for many socio-technical, -economic, -ecological systems. Additionally, it exhibits analogies with the framework of extended evolution, which has previously been used to study cultural evolution.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...