Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 2000-2004  (2)
  • Accretion  (1)
  • Caffeine Calcium Ryanodine receptor Ion channel Cardiac Ventricular myocyte  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 440 (2000), S. 125-131 
    ISSN: 1432-2013
    Keywords: Caffeine Calcium Ryanodine receptor Ion channel Cardiac Ventricular myocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The activity of caffeine-activated large conductance channels was recorded in whole-cell, patch-clamped, isolated ventricular myocytes from rabbit heart. The channels were permeable to monovalent and divalent cations and had a unitary monovalent cation conductance of 300–400 pS. Extracellular ruthenium red reduced the unitary conductance of the caffeine-activated channel in a concentration- and voltage-dependent manner. Ryanodine locked the caffeine-activated channels into a subconductance state. Elevating intracellular Ca2+ by photolysis of "caged calcium" increased the number of channel openings. The properties of this caffeine-activated channel were remarkably similar to those of cardiac ryanodine receptors (RyR) and support the novel finding that these channels may also be found on the sarcolemmal membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 92 (2000), S. 323-340 
    ISSN: 1572-9672
    Keywords: Accretion ; Accretion Disks – Solar System: Formation – Planetary Systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We review results about protoplanetary disk models, protoplanet migration and formation of giant planets with migrating cores. We first model the protoplanetary nebula as an α–accretion disk and present steady state calculations for different values of α and gas accretion rate through the disk. We then review the current theories of protoplanet migration in the context of these models, focusing on the gaseous disk–protoplanet tidal interaction. According to these theories, the migration timescale may be shorter than the planetary formation timescale. Therefore we investigate planet formation in the context of a migrating core, considering both the growth of the core and the build–up of the envelope in the course of the migration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...