Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 2000-2004  (2)
  • Key words Glycolysis – preconditioning – protein kinase C – mitochondria – rat heart  (1)
  • pressure overload  (1)
Material
Years
  • 2005-2009
  • 2000-2004  (2)
Year
Keywords
  • 1
    ISSN: 1573-4919
    Keywords: pressure overload ; gene expression ; subcellular remodeling ; sarcoplasmic reticulum Ca2+-handling ; anti-hypertensive therapy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The effects of propranolol and verapamil on contractile dysfunction, subcellular remodeling and changes in gene expression in cardiac hypertrophy due to pressure overload were examined. Rats were subjected to banding of the abdominal aorta and then treated with either propranolol (10 mg/kg daily), verapamil (5 mg/kg daily) or vehicle for 8 weeks after the surgery. Depression of the left ventricular function in the hypertrophied heart was associated with decreases in myofibrillar and myosin CA2+ ATPase activities as well as Ca2+-pump and Ca2+-release activities of the sarcoplasmic reticulum (SR). The level of a-myosin heavy chain (α-MHC) mRNA was decreased while that of β-MHC mRNA was increased in the pressure-overloaded heart. The level of SR Ca2+-pump ATPase (SERCA2) mRNA and protein content for SERCA2 were decreased in the pressure overloaded heart. Treatment of the hypertrophied animals with propranolol or verapamil resulted in preservation of the left ventricular function and prevention of the subcellular alterations. Shift in the α- and β-MHC mRNA levels and changes in the expression in SERCA2 mRNA level and protein content were also attenuated by these treatments. The results suggest that blockade of β-adrenoceptors or voltage-dependent calcium channels normalizes the cardiac gene expression, prevents subcellular remodeling and thus attenuates heart dysfunction in rats with cardiac hypertrophy. Furthermore, both cardiac β-adrenoceptors and L-type Ca2+-channels may be involved in the genesis of cardiac hypertrophy due to pressure overload.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1803
    Keywords: Key words Glycolysis – preconditioning – protein kinase C – mitochondria – rat heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objectives. A possible link between activation of PKC and improvement of energy metabolism during reperfusion in ischemic preconditioning hearts was examined. Methods. Isolated perfused rat hearts were preconditioned by 5-min ischemia and 5-min reperfusion in the presence and absence of a PKC inhibitor polymyxin B (50 μM) and then subjected to 40-min sustained ischemia and subsequent 30-min reperfusion. In another set of experiments, the hearts pretreated with and without a PKC activator PMA (15 pmol/5 min) were subjected to the sustained ischemia and reperfusion. Myocardial high-energy phosphates, glycolytic intermediates and mitochondrial oxygen consumption capacity were determined at appropriate experimental sequences. Results. Preconditioning enhanced the recovery of cardiac function such as left ventricular developed pressure, heart rate and rate-pressure product of the reperfused heart, suppressed the release of creatine kinase, enhanced the reperfusion-induced restoration of myocardial high-energy phosphates, attenuated the reperfusion-induced accumulation in glucose 6-phosphate and fructose 6-phosphate contents, abolished the ischemia-induced increase in tissue lactate content and prevented the ischemia-induced decrease in mitochondrial oxygen consumption capacity. Treatment of the perfused heart with PMA mimicked the effects of preconditioning on post-ischemic contractile function, enzyme release, levels of myocardial energy store, glycolytic intermediates and lactate, and mitochondrial function. Polymyxin B-treatment abolished the preconditioning-induced recovery of post-ischemic contractile function, the suppression of the release of CK, the restoration of myocardial energy store, and the preservation of mitochondrial function, whereas it did not cancel the improvement of glycolytic intermediate levels and the reduction in tissue lactate accumulation. Post-ischemic contractile function was closely related to restoration of high-energy phosphates and mitochondrial oxygen consumption capacity in all hearts subjected to ischemia/reperfusion. Conclusion. The results suggest that activation of PKC and preservation of mitochondrial function are closely linked with each other in the preconditioned heart, which may lead to the improvement of post-ischemic contractile function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...