Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1995-1999  (1)
  • 1950-1954
  • Cat  (1)
  • 1
    ISSN: 1432-1106
    Keywords: Motoneuron ; Stretch reflex ; Cutaneous ; Contralateral ; Spinal ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of bilateral focal cooling of dorsolateral thoracic spinal cord on segmental reflex pathways to the triceps surae muscles were assessed in decerebrate cats from the reflex forces produced by single shocks or trains of electrical stimuli applied to the ipsilateral caudal cutaneous sural and the contralateral tibial nerves. The validity of the dorsal cold block technique as a substitute for acute surgical dorsal hemisection was established by showing that focal cooling reliably reproduced the stretch-induced “clasp knife” inhibition of triceps surae reflexive force seen following dorsal hemisection. Under control (warm) conditions, the inhibitory components of electrically evoked ipsilateral sural and contralateral tibial reflexes faded rapidly during sustained trains, with a resultant production of large-amplitude reflex force as measured from either the entire triceps surae or from the medial gastrocnemius muscle alone. Dorsal cold block greatly reduced the amplitude of reflexive force evoked by sustained electrical stimulation of either nerve. Indeed, the cold block completely reversed the sign of train-evoked reflexes to a net inhibition of reflex force output in one-half of the sural and one-half of the contralateral tibial stimulation experiments. Peak transient forces evoked by single shocks to the sural or contralateral tibial nerves were also sometimes reduced, but this result was more variable than for prolonged nerve stimulation. The persistence of activity in segmental inhibitory pathways during dorsal cold block, as indicated by instances of reflex sign reversal, suggests that descending bulbospinal pathways traversing the dorsolateral funiculi may be responsible for “fading” of segmental inhibitory reflex components in decerebrate cats with intact spinal cords during sustained afferent input. The possibility that the enhanced magnitude and duration of segmental inhibition during cold block will increase the likelihood of disruption of the size principle for motoneuron recruitment is also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...