Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1995-1999  (2)
  • 1945-1949
  • Reference systems  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 73 (1999), S. 219-236 
    ISSN: 1432-1394
    Keywords: Key words. Geoid ; GPS ; Datums ; Reference systems ; Gravity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. The 2 arc-minute × 2 arc-minute geoid model (GEOID96) for the United States supports the conversion between North American Datum 1983 (NAD 83) ellipsoid heights and North American Vertical Datum 1988 (NAVD 88) Helmert heights. GEOID96 includes information from global positioning system (GPS) height measurements at optically leveled benchmarks. A separate geocentric gravimetric geoid, G96SSS, was first calculated, then datum transformations and least-squares collocation were used to convert from G96SSS to GEOID96. Fits of 2951 GPS/level (ITRF94/NAVD 88) benchmarks to G96SSS show a 15.1-cm root mean square (RMS) around a tilted plane (0.06 ppm, 178∘ azimuth), with a mean value of −31.4 cm (15.6-cm RMS without plane). This mean represents a bias in NAVD 88 from global mean sea level, remaining nearly constant when computed from subsets of benchmarks. Fits of 2951 GPS/level (NAD 83/NAVD 88) benchmarks to GEOID96 show a 5.5-cm RMS (no tilts, zero average), due primarily to GPS error. The correlated error was 2.5 cm, decorrelating at 40 km, and is due to gravity, geoid and GPS errors. Differences between GEOID96 and GEOID93 range from −122 to +374 cm due primarily to the non-geocentricity of NAD 83.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 73 (1999), S. 1-9 
    ISSN: 1432-1394
    Keywords: Key words. Geoid ; Mean sea level ; Ocean dynamic topography ; GPS ; Reference systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. A 2×2 arc-minute resolution geoid model, CARIB97, has been computed covering the Caribbean Sea. The geoid undulations refer to the GRS-80 ellipsoid, centered at the ITRF94 (1996.0) origin. The geoid level is defined by adopting the gravity potential on the geoid as W 0=62 636 856.88 m2/s2 and a gravity-mass constant of GM=3.986 004 418×1014 m3/s2. The geoid model was computed by applying high-frequency corrections to the Earth Gravity Model 1996 global geopotential model in a remove-compute-restore procedure. The permanent tide system of CARIB97 is non-tidal. Comparison of CARIB97 geoid heights to 31 GPS/tidal (ITRF94/local) benchmarks shows an average offset (h–H–N) of 51 cm, with an Root Mean Square (RMS) of 62 cm about the average. This represents an improvement over the use of a global geoid model for the region. However, because the measured orthometric heights (H) refer to many differing tidal datums, these comparisons are biased by localized permanent ocean dynamic topography (PODT). Therefore, we interpret the 51 cm as partially an estimate of the average PODT in the vicinity of the 31 island benchmarks. On an island-by-island basis, CARIB97 now offers the ability to analyze local datum problems which were previously unrecognized due to a lack of high-resolution geoid information in the area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...