Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Insulin receptor substrate-1 (IRS-1) ; non-insulin-dependent diabetes mellitus ; genetics ; single-stranded conformation polymorphisms ; insulin resistance ; polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Since the insulin receptor substrate-1 (IRS-1) is the major substrate of the insulin receptor tyrosine kinase and has been shown to activate phosphatidylinositol (PI) 3-kinase and promote GLUT4 translocation, the IRS-1 gene is a potential candidate for development of non-insulin-dependent diabetes mellitus (NIDDM). In this study, we have identified IRS-1 gene polymorphisms, evaluated their frequencies in Japanese subjects, and analysed the contribution of these polymorphisms to the development of NIDDM. The entire coding region of the IRS-1 gene of 94 subjects (47 NIDDM and 47 control subjects) was screened by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) analysis. Seven SSCP polymorphisms were identified. These corresponded to two previously identified polymorphisms [Gly971→Arg (GGG→AGG) and Ala804 (GCA→GCG)] as well as five novel polymorphisms [Pro190→Arg (CCC→CGC), Met209→Thr (ATG→ACG), Ser809→Phe (TCT→TTT), Leu142 (CTT→CTC), and Gly625 (GGC→GGT)]. Although the prevalence of each of these polymorphisms was not statistically different between NIDDM and control subjects, the prevalence of the four IRS-1 polymorphisms with an amino acid substitution together was significantly higher in NIDDM than in control subjects (23.4 vs 8.5%, p〈0.05), and two substitutions (Met209→Thr and Ser809→Phe) were found only in NIDDM patients. Equilibrium glucose infusion rates during a euglycaemic clamp in NIDDM and control subjects with the IRS-1 polymorphisms decreased by 29.5 and 22.0%, respectively on the average when compared to those in comparable groups without polymorphisms, although they were not statistically significant. Thus, IRS-1 polymorphisms may contribute in part to the insulin resistance and development of NIDDM in Japanese subjects; however, they do not account for the major part of the decrease in insulin-stimulated glucose uptake which is observed in subjects with clinically apparent NIDDM.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Insulin receptor substrate-1 (IRS-1) ; non-insulin-dependent diabetes mellitus ; genetics ; single-stranded conformation polymorphisms ; insulin resistance ; polymorphism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Since the insulin receptor substrate-1 (IRS-1) is the major substrate of the insulin receptor tyrosine kinase and has been shown to activate phosphatidylinositol (PI) 3-kinase and promote GLUT4 translocation, the IRS-1 gene is a potential candidate for development of non-insulin-dependent diabetes mellitus (NIDDM). In this study, we have identified IRS-1 gene polymorphisms, evaluated their frequencies in Japanese subjects, and analysed the contribution of these polymorphisms to the development of NIDDM. The entire coding region of the IRS-1 gene of 94 subjects (47 NIDDM and 47 control subjects) was screened by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) analysis. Seven SSCP polymorphisms were identified. These corresponded to two previously identified polymorphisms [Gly971→Arg (GGG→AGG) and Ala804 (GCA→GCG)] as well as five novel polymorphisms [Pro190→Arg (CCC→CGC), Met209→Thr (ATG→ACG), Ser809→Phe (TCT→TTT), Leu142 (CTT→CTC), and Gly625 (GGC→GGT)]. Although the prevalence of each of these polymorphisms was not statistically different between NIDDM and control subjects, the prevalence of the four IRS-1 polymorphisms with an amino acid substitution together was significantly higher in NIDDM than in control subjects (23.4 vs 8.5 %, p 〈 0.05), and two substitutions (Met209→Thr and Ser809→Phe) were found only in NIDDM patients. Equilibrium glucose infusion rates during a euglycaemic clamp in NIDDM and control subjects with the IRS-1 polymorphisms decreased by 29.5 and 22.0 %, respectively on the average when compared to those in comparable groups without polymorphisms, although they were not statistically significant. Thus, IRS-1 polymorphisms may contribute in part to the insulin resistance and development of NIDDM in Japanese subjects; however, they do not account for the major part of the decrease in insulin-stimulated glucose uptake which is observed in subjects with clinically apparent NIDDM. [Diabetologia (1996) 39: 600–608]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Keywords MODY ; hepatocyte nuclear factor-1α ; recombinant adenovirus ; MIN6 cells ; dominant negative effect ; arginine.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. To explain the mechanisms whereby mutations in the HNF-1α gene cause insulin secretory defects. Methods. A truncated mutant HNF-1α (HNF-1α288 t) was overexpressed in hepatoma cells (HepG2) and murine insulinoma cells (MIN6) using a recombinant adenovirus system and expression of the HNF-1α target genes and insulin secretion were examined. Results. Expression of phenylalanine hydroxylase and α1-antitrypsin genes, the target genes of HNF-1α, was suppressed in HepG2 cells by overexpression of HNF-1α288 t. In MIN6 cells, overexpression of HNF-1α288 t did not change insulin secretion stimulated by glucose (5 mmol/l and 25 mmol/l) or leucine (20 mmol/l). Potentiation of insulin secretion by arginine (20 mmol/l, in the presence of 5 mmol/l or 25 mmol/l glucose) was, however, reduced (p 〈 0.0001 and p = 0.027, respectively). Similarly reduced responses were observed when stimulated with homoarginine. Expression of the cationic amino acid transporter-2 was not reduced and insulin secretory response to membrane depolarization by 50 mmol/l KCl was intact. Conclusion/interpretation. The HNF-1α288 t, which is structurally similar to the mutant HNF-1α expressed from the common MODY3 allele, P291fsinsC, exerts a dominant negative effect. Suppression of HNF-1α in MIN6 cells severely impaired potentiation of insulin secretion by arginine, whereas glucose-stimulated and leucine-stimulated insulin secretion was intact. Our findings delineate the complex nature of beta-cell failure in patients with MODY3. This cell model will be useful for further investigation of the mechanism of insulin secretory defects in these patients. [Diabetologia (1999) 42: 887–891]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...