Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
  • 1990-1994  (1)
Material
Years
Year
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Astrocytes express a variety of metabotropic receptors and their activation leads to a biphasic Ca2+ response due to Ca2+ release from intracellular stores and subsequent capacitative Ca2+ entry. We performed Ca2+ imaging with Fura-2 on cultured mouse astrocytes and showed that extracellular zinc reversibly blocks the capacitative Ca2+ entry following application of the metabotropic ligands ATP, glutamate and endothelin-1. Zinc blocked the plateau phase of the ligand-triggered Ca2+ responses. When ligands were repetitively applied in the presence of zinc the calcium responses progressively decayed and even disappeared, indicating that capacitative Ca2+ entry is required to refill the stores. Zinc inhibited the capacitative Ca2+ entry with a Ki of ≈ 6 µm, which is well within the physiological concentration range of zinc found in the brain. Application of the reducing agent DTT prevented the blocking effect by zinc ions but not the inhibition elicited by the nonphysiological metal ions Gd3+ and La3+, indicating that zinc has a distinct binding site. To monitor the capacitative Ca2+ entry in astrocytes in situ and to determine the effect of zinc on this pathway we utilized X-rhod-1 imaging in hippocampal slices of a transgenic mouse line with green fluorescent astrocytes. Zinc affected the repetitive metabotropic Ca2+ response in the following fashion: (i) after depleting stores in Ca2+-free solution, re-addition of Ca2+ led to an influx of Ca2+ via a zinc-sensitive Ca2+ entry route; (ii) with repetitive application of metabotropic ligands, Ca2+ responses became smaller and even disappeared in the presence of zinc. We conclude that zinc, which is coreleased from glutamatergic synaptic vesicles upon neuronal activity, has a major impact on shaping the astrocytic calcium responses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 159 (1994), S. 573-581 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Exposure to hypotonic stress produces a transient increase in cell volume followed by a regulatory volume decrease (RVD) in both THP-1 and HL-60 cells. In contrast, cells exposed to hypotonic stress in a high K/low Na Hanks' solution not only failed to volume regulate, but displayed a secondary swelling. Thus, while an outward K gradient was required ful KVD, the secondary swelling indicated that hypotonic stress increased permeability in the absence of a negative membrane potential. The K channel blocker quinine (1-4 mM) blocked RVD in both cell types. Gramicidin's ability to overcome the quinine block of RVD indicated that RVD is mediated by a quinine-sensitive cation transport mechanism that is independent of the swelling-induced anion transport mechanism. Barium (1-4 mM), another K channel blocker, slowed the rate of RVD, while 4-aminopyridine, charybdotoxin, tetraethylammonium chloride, tetrabutylammonium chloride, and gadolinium had no effect on RVD. Furthermore, RVD was not mediated by calcium-activated conductances, since it occurred normally in Ca-free medium, in medium containing cadmium, and in BAPTA-loaded cells. Gramicidin produced little or no volume change in isotonic medium, suggesting that basal C1 permeability of both THP-1 and HL-60 cells is low. However, swelling induced an anion efflux pathway that is permeable to both chloride and bromide, but is impermeable to methanesulfonate and glutamate. The anion channel blocker 3,5-diiodosalicylic acid (DISA) antagonized RVD in both cell types. In conclusion, RVD in THP-1 and HL-60 cells is mediated by independent anion and cation transport mechanisms that involve both a DISA-sensitive anion pathway and a quinine-inhibitable K efflux pathway, neither of which requires increases in intra-cellular calcium to be activated. © 1994 wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...