Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Cell wall (extensibility) ; Hydraulic conductivity ; Leaf growth ; Light and leaf growth ; Osmotic potential ; Phaseolus ; Yield stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of three-turgor-related cellular parameters, the osmotic potential (Ψ s), the wall yield stress (Y) and the apparent hydraulic conductivity (L'p), in the initiation of ligh-induced expansion of bean (Phaseolus vulgaris L.) leaves has been determined. Although light causes an increase in the total solute content of leaf cells, the water uptake accompanying growth results in a slight increase in Ψ s. Y is about 4 bar; and is unaffected by light. L'p, as calculated from growth rates and isopiestic measurements of leaf water potential, is only slightly greater in rapidly-growing leaves. The turgor pressure of growing cells is lower than that of the controls by about 35%. We conclude that light does not induce cell enlargement in the leaf by altering any of the above parameters, but does so primarily by increasing wall extensibility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 148 (1980), S. 273-278 
    ISSN: 1432-2048
    Keywords: Acid-growth theory ; Cell enlargement ; Cell-wall extensibility ; Leaf expansion ; Phaseolus ; Proton excretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Light-induced expansion of Phaseolus vulgaris L. leaf cells is accompanied by increased cell-wall plasticity. The possibility that leaf-cell walls are loosened by excreted protons has been investigated. First, light causes acidification, detected at the leaf surface, within 5–15 min. Growth starts 10–20 min after exposure to light. Second, exogenous acid induces loosening of isolated leaf cell walls. Third, infiltration of the tissue with a neutral buffer inhibits light-induced growth. Fourth, fusicoccin stimulates growth of as well as H+ excretion by bean leaf cells, without light. These findings show that the acid-growth theory is applicable to light-induced growth of leaf cells, and indicate that light-induced proton excretion initiates cell enlargement in leaves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...