Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
Material
Years
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cyclic AMP response element binding protein (CREB) is a constitutive transcription factor that activates transcription following stimulus-dependent phosphorylation at Ser133, implicated in synaptic plasticity and neuronal survival pathways. The prevailing view that CREB is exclusively nuclear has been questioned by several studies, and, for example, mitochondrial localization has been reported. Using subcellular fractionation of rat brain cortex coupled with western immunoblotting with Ser133-phospho-CREB (pCREB) antibodies, we found a robust pCREB immunoreactivity (IR) in mitochondria-enriched fractions. The pCREB antibodies also stained the mitochondria, in addition to nuclei, of glial cells in primary cortical cultures. However, two CREB antibodies against different epitopes and gel shift assay detected the CREB protein mainly in the nuclear fraction. The two-dimensional electrophoretic mobility of mitochondrial pCREB IR differed markedly from the nuclear CREB/pCREB IR, indicating that the pCREB antibody cross-reacts with another mitochondrial protein. Immunoprecipitation of the mitochondrial pCREB IR produced three bands on sodium dodecyl sulfate–polyacrylamide gel electrophoresis, which were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as E2, E1 α-subunit, and E1 β-subunit of pyruvate dehydrogenase complex. The cross-reacting epitope was identified as phospho-Ser300 of the α-subunit. In conclusion, this study confirms the presence of pCREB-like IR in brain mitochondria that, after careful scrutiny, turned out to be pyruvate dehydrogenase rather than authentic CREB.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Metabotropic glutamate receptors (mGluR) modulate neuronal function. Here, we tested the effect on metabolism of a range of Group I and II mGluR ligands in Guinea pig brain cortical tissue slices, applying 13C NMR spectroscopy and metabolomic analysis using multivariate statistics. The effects of Group I agonists (S)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) depended upon concentration and were mostly stimulatory, increasing both net metabolic flux through the Krebs cycle and glutamate/glutamine cycle activity. Only the higher (50 µm) concentrations of CHPG had the opposite effect. The Group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), consistent with its neuroprotective role, caused significant decreases in metabolism. With principal components analysis of the metabolic profiles generated by these ligands, the effects could be separated by two principal components. Agonists at Group II mGluR [(2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG IV) and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC)] generally stimulated metabolism, including glutamate/glutamine cycling, although this varied with concentration. The antagonist (2S)-α-ethylglutamic acid (EGLU) stimulated astrocyte metabolism with minimal impact on glutamate/glutamine cycling. (RS)-1-Aminophosphoindan-1-carboxylic acid (APICA) decreased metabolism at 5 µm but had a stimulatory effect at 50 µm. All ligand effects were separated from control and from each other using two principal components. The ramifications of these findings are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...