Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK and Malden, USA : Blackwell Science Inc
    Journal of food process engineering 28 (2005), S. 0 
    ISSN: 1745-4530
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article presents a mathematical model describing the unsteady heat and mass transfer during the freeze drying of biological materials. The model was built from the mass and energy balances in the dried and frozen regions of the material undergoing freeze drying. A set of coupled nonlinear partial differential equations permitted the description of the temperature and pressure profiles, together with the position of the sublimation interface. These equations were transformed to a finite element scheme and numerically solved using the Newton-Raphson approach to represent the nonlinear problem and the interface position. Most parameters involved in the model (i.e., thermal conductivity, specific heat, density, heat and mass transfer coefficients etc.) were obtained from experimental data cited in the literature. The dehydration kinetics and the temperature profiles of potato and apple slabs were experimentally determined during freeze drying. The simulation results agreed closely with the water content experimental data. The prediction of temperature profiles within the solid was, however, less accurate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...