Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1995-1999  (3)
  • 1950-1954  (1)
  • 1
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A comprehensive approach using palaeontology, petrography, stable isotope geochemistry and biomarker analyses was applied to the study of seven small methane-seep carbonate deposits. These deposits are in the Oligocene part of the Lincoln Creek Formation, exposed along the Canyon and Satsop Rivers in western Washington. Each deposit preserves invertebrate fossils, many representing typical seep biota. Authigenic carbonates with δ13C values as low as −51‰ PDB reveal that the carbon is predominately methane derived. Carbonates contain the irregular isoprenoid hydrocarbons 2,6,11,15-tetramethylhexadecane (crocetane) and 2,6,10,15,19-pentamethylicosane (PMI), lipid biomarkers diagnostic for archaea. These lipids are strongly depleted in 13C (δ13C values as low as −120‰ PDB), indicating that archaea were involved in the anaerobic oxidation of methane. Small filaments preserved in the carbonate may represent methanotrophic archaea. Archaeal methanogenesis induced the formation of a late diagenetic phase, brownish calcite, consisting of dumbbell-shaped crystal aggregates that exhibit δ13C values as high as +7‰ PDB. Clotted microfabrics of primary origin point to microbial mediation of carbonate precipitation. Downward-directed carbonate aggregation in the seeps produced inverted stromatactoid cavities. Large filaments, interpreted as green algae based on their size, shape, arrangement and biomarkers, imply that deposition occurred, in places, in water no deeper than 210 m.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: To obtain reliable estimates for the loss of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils, one has to distinguish between (i) losses due to release and solute transport and (ii) losses resulting from degradation. We studied the interplay of these processes in a column experiment representing a typical soil contamination scenario: in the upper part of the column was a contaminated layer, spiked with 9-13C-labelled anthracene, and beneath it uncontaminated pristine soil. The experimental course comprised a steady-state flow phase (constant irrigation for 4 months) followed by several periods during which flow was halted. The effects of varied residence time on anthracene biodegradation and on anthracene mass transfer were investigated. We monitored labelled anthracene and its transformation products, dissolved organic carbon, electric conductivity (EC), pH, and inorganic carbonate content in the column effluent, and the CO2 evolved.Under steady-state flow, pH, dissolved organic C, and EC approached steady states after 350 pore volumes. Concentrations of anthracene in the effluent, however, increased continuously and levelled off after 800 pore volumes. This marked retardation reflects the great affinity of anthracene to soil organic matter. The response to interruptions in the flow revealed that mass is transferred without equilibrium between solid and liquid phase for both anthracene and dissolved organic C. Thus, residence time is one factor controlling the concentration of anthracene in the effluent and therefore the export of contaminant to the aquifer. In the course of the experiment several labelled anthracene degradation products appeared in the effluent. At least three of them were identified as transformation products showing a dramatic increase in mobility relative to the parent compound. A third of the overall anthracene loss from the column was due to solute transport, and biodegradation was responsible for the remaining two thirds. The incomplete degradation of anthracene leads to the formation of highly mobile transformation products and thus promotes the export of carbon, derived from the contaminant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 82 (1995), S. 139-142 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 82 (1995), S. 139-142 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Archives of gynecology and obstetrics 178 (1950), S. 62-64 
    ISSN: 1432-0711
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1437-3262
    Keywords: Key words Carbonates ; Cold seeps ; Methane ; Petroleum ; Archaea ; Bacteria ; Sponges ; Tube worms ; Epifluorescence ; Biomarkers ; Jurassic ; Tertiary ; France ; Italy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The relation of two well-known ancient carbonate deposits to hydrocarbon seepage was confirmed by this study. Archaea are found to be associated with the formation of Oxfordian seep carbonates from Beauvoisin and with a Miocene limestone from Marmorito ("tube-worm limestone"). Carbonates formed due to a mediation by archaea exhibit extremely positive or extremely negative δ13Ccarbonate values, respectively. Highly positive values (+15‰) reflect the use of 13C-enriched CO2 produced by methanogenesis. Low δ13C values of the Marmorito carbonates (–30‰) indicate the oxidation of seepage-derived hydrocarbons. Likewise, the δ13C content of specific tail-to-tail linked isoprenoids, biomarkers for archaea, was found to be strikingly depleted in these samples (as low as –115‰). The isotopic signatures corroborate that archaea were involved in the cycling of seepage-derived organic carbon at the ancient localities. Another Miocene limestone ("Marmorito limestone") shows a strong imprint of methanotrophic bacteria as indicated by δ13C values of carbonate as low as –40‰ and biomarker evidence. Epifluorescence microscopy and field-emission scanning electron microscopy revealed that bacterial biofilms were involved in carbonate aggregation. In addition to lucinid bivalves previously reported from both localities, we infer that sponges from Beauvoisin and tube worms from Marmorito depended on chemosynthesis as well. Low δ13C values of nodules related to sponge taphonomy (–27‰) indicate that sponges might have been linked to an enhanced hydrocarbon oxidation. Tube worm fossils from Marmorito closely resemble chemosynthetic pogonophoran tube worms from Recent cold seeps and are embedded in isotopically light carbonate (δ13C –30‰).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...