Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 336-344 
    ISSN: 0887-3585
    Keywords: hydrophobicity ; molecular evolution ; local propensities ; reverse hydrophobic effect ; protein stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: To investigate how the properties of individual amino acids result in proteins with particular structures and functions, we have examined the correlations between previously derived structure-dependent mutation rates and changes in various physical-chemical properties of the amino acids such as volume, charge, α-helical and β-sheet propensity, and hydrophobicity. In most cases we found the ΔG of transfer from octanol to water to be the best model for evolutionary constraints, in contrast to the much weaker correlation with the ΔG of transfer from cyclohexane to water, a property found to be highly correlated to changes in stability in site-directed mutagenesis studies. This suggests that natural evolution may follow different rules than those suggested by results obtained in the laboratory. A high degree of conservation of a surface residue's relative hydrophobicity was also observed, a fact that cannot be explained by constraints on protein stability but that may reflect the consequences of the reverse-hydrophobic effect. Local propensity, especially α-helical propensity, is rather poorly conserved during evolution, indicating that non-local interactions dominate protein structure formation. We found that changes in volume were important in specific cases, most significantly in transitions among the hydrophobic residues in buried locations. To demonstrate how these techniques could be used to understand particular protein families, we derived and analyzed mutation matrices for the hypervariable and framework regions of antibody light chain V regions. We found a surprisingly high conservation of hydrophobicity in the hypervariable region, possibly indicating an important role for hydrophobicity in antigen recognition. Proteins 27:336-344, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 461-466 
    ISSN: 0887-3585
    Keywords: protein folding ; molecular evolution ; lattice models ; fitness landscapes ; neutral networks ; spin-glass theory ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We model the evolution of simple lattice proteins as a random walk in a fitness landscape, where the fitness represents the ability of the protein to fold. At higher selective pressure, the evolutionary trajectories are confined to neutral networks where the native structure is conserved and the dynamics are non self-averaging and nonexponential. The optimizability of the corresponding native structure has a strong effect on the size of these neutral networks and thus on the nature of the evolutionary process. Proteins 29:461-466, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 289-295 
    ISSN: 0887-3585
    Keywords: molecular evolution ; protein evolution ; mutation matrices ; Metropolis kinetics ; Boltzmann statistics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: New computational models of natural site mutations are developed that account for the different selective pressures acting on different locations in the protein. The number of adjustable parameters is greatly reduced by basing the models on the underlying physical-chemical properties of the amino acids. This allows us to use our method on small data sets built of specific protein types. We demonstrate that with this approach we can represent the evolutionary patterns in HIV envelope proteins far better than with more traditional methods. Proteins 32:289-295, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 42 (1997), S. 427-438 
    ISSN: 0006-3525
    Keywords: protein folding ; molecular evolution ; lattice models ; fitness landscapes ; spin glasses ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Molecular evolution may be considered as a walk in a multidimensional fitness landscape, where the fitness at each point is associated with features such as the function, stability, and survivability of these molecules. We present a simple model for the evolution of protein sequences on a landscape with a precisely defined fitness function. We use simple lattice models to represent protein structures, with the ability of a protein sequence to fold into the structure with lowest energy, quantified as the foldability, representing the fitness of the sequence. The foldability of the sequence is characterized based on the spin glass model of protein folding. We consider evolution as a walk in this foldability landscape and study the nature of the landscape and the resulting dynamics. Selective pressure is explicitly included in this model in the form of a minimum foldability requirement. We find that different native structures are not evenly distributed in interaction space, with similar structures and structures with similar optimal foldabilities clustered together. Evolving proteins marginally fulfill the selective criteria of foldability. As the selective pressure is increased, evolutionary trajectories become increasingly confined to “neutral networks,” where the sequence and the interactions can be significantly changed while a constant structure is maintained. © 1997 John Wiley & Sons, Inc. Biopoly 42: 427-438, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...