Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1995-1999  (2)
  • Na2SO4  (2)
  • Ferroics  (1)
  • 1
    ISSN: 1572-8927
    Keywords: Activity coefficient ; electromotive force ; Pitzer ; HCl ; Na2SO4 ; NaHSO4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The electromotive force of HCl–Na2SO4 solutions has been determined from 5 to 50°C and ionic strengths from 0.5 to 6m with a Harned type cell $${\text{Pt; H}}_{\text{2}} ({\text{g, 1 atm}})|{\text{HCl(}}m_1 {\text{) + Na}}_{\text{2}} {\text{SO}}_{\text{4}} {\text{(}}m_2 {\text{)}}|{\text{AgCl, Ag}}$$ The results have been used to determine the activity coefficient of HCl in the mixtures. The activity coefficients have been analyzed with the Pitzer equations to account for the ionic interactions. The measurements were used to determine interaction coefficients (β0, β1) for NaHSO4 solutions from 5 to 50°C. The model represents the mean activity coefficients of HCl in the mixtures to ±0.005 over the entire temperature and concentration range of the measurements. The results have been combined with literature data to provide parameters that are valid from 0 to 250°C for NaHSO4 solutions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8927
    Keywords: Activity coefficient ; electromitive force ; Pitzer, HCl ; Na2SO4 ; NaHSO4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The electromotive force of HCl−Na2SO4 solutions has been determined from 5 to 50°C and ionic strengths from 0.5 to 6m with a Harned type cell $$Pt; H_2 (g, 1 atm)|HCl(m_1 ) + Na_2 SO_4 (m_2 )|AgCl, Ag$$ The results have been used to determine the activity coefficient of HCl in the mixtures. The activity coefficiencts have been analyzed with the Pitzer equations to account for the ionic interactions. The measurements were used to determine interaction coefficients (β0, β1) for NaHSO4 solutions from 5 to 50°C. The model represents the mean activity coefficients HCl in the mixtures to ±0.005 over the entire temperature and concentration range of the measurements. The results have been combined with literature data to provide parameters that are valid from 0 to 250°C for NaHSO4 solutions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Materials research innovations 4 (2000), S. 3-26 
    ISSN: 1433-075X
    Keywords: Keywords Perovskite ; Crystal-chemistry ; Tolerance factor ; Ferroics ; Electro-ceramics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Starting with the history of the fundamental science of the relation of structure to composition delineated completely by Goldschmidt, we use the perovskite structure to illustrate the enormous power of crystal chemistry-based intelligent synthesis in creating new materials. The perovskite structure is shown to be the single most versatile ceramic host. By appropriate changes in composition one can modify the most significant electroceramic dielectric (BaTiO3 and its relatives) phase in industry, into metallic conductors, superconductors or the highest pressure phases in the earth. After an historical introduction of the science, detailed treatment of the applications is confined to the most recent research on novel uses in piezoelectric, ferroelectric and related applications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...