Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1995-1999  (2)
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Hydroxyapatite — Ceramics — Bone reconstruction — Bone repair — Biomaterials — Orthopedic surgery.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. The capacity of hydroxyapatite (HA) implants to support large defect repair in weight-bearing long bones of large size animals was investigated. Diaphyseal resections 3.5 cm of the tibia were performed in five adult sheep. They were substituted with HA macroporous ceramic cylinders anatomically shaped, and an external fixator was assembled. The sheep were sacrificed at 20, 40, 60, 120, and 270 days after surgery, respectively. Histology and micro X-ray study of resected implants and adjacent tissues showed proper integration of ceramic with newly formed periosteal bone as early as 20 days after surgery. In one sheep, the external fixator was removed 5 months after surgery. The animal gained the ability to walk with no functional impairment until it was sacrificed 4 months later. At this time, extensive integration of ceramic with bone was detected radiographically and confirmed by a morphological study of the resected sample. Our data indicate that large defects in a weight-bearing long bone can be repaired to the extent necessary for full functional recovery in large animals. These data set the stage for further intervention on material properties as well as for preliminary attempts to use ceramic prostheses for reconstruction of large bone defects in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 67 (2000), S. 2-9 
    ISSN: 1432-0827
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Porous hydroxyapatite (HA) scaffoldings are currently used in tissue engineering for bone reconstruction. When this osteoconductive biomaterial is combined with osteoprogenitor cells, it acquires osteoinductive features which accelerate and improve bone formation in vivo. The aim of our study was to assess the mechanical properties of HA–bone complexes undergoing indentation tests, and relate stiffness to composition and structure as examined by micro X-ray. To this purpose, 35-mm tibia diaphyseal resections were performed in sheep. Gaps were filled using porous HA cylinders. Implants were loaded with autologous bone marrow stromal cells (BMSC); cell-free cylinders were used as control. After 8 weeks, bone tissue was found within the internal macropores of cell-loaded HA carriers, and in control implants, bone formation was mostly limited to the outer surface. As assessed by indentation testing the stiffness values of bone–HA composites were halfway between those of HA scaffoldings and tibia bone. Cell-loaded implants were stiffer than cell-free ones. In a cell-loaded implant we also analyzed the variation of stiffness along the main axis of the tibia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...