Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (93)
  • 1995-1999  (328)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics of the solid state 42 (2000), S. 126-131 
    ISSN: 1063-7834
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The conditions of the formation of different magnetic structures with ferromagnetic (FM) and antiferromagnetic (AFM) ordering in granular materials containing a subsystem of ferromagnetic granules are considered within the phenomenological approach. It is supposed that the magnetostatic field and the exchange interaction between conduction electrons and magnetic ions are responsible for the formation of magnetic structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of experimental and theoretical physics 91 (2000), S. 167-169 
    ISSN: 1090-6509
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The conditions for the existence of a spiral magnetic configuration are determined for a thin ferromagnetic film with biaxial anisotropy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Physics of the solid state 40 (1998), S. 243-247 
    ISSN: 1063-7834
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A perturbation theory is developed for the integrodifferential Landau-Lifshits equation that describes the state of 2π-domain walls in ferromagnetic films. The static and dynamic parameters of a 2π-domain wall are determined, taking into account its micromagnetic structure. The limits of applicability of geometric domain wall models are indicated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-9120
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Abstract The SPEKTR module of the MIR orbital station was launched in May 1995. The multipurpose experiment was based on the GRIF-1 research complex consisting of an oriented X-ray spectrometer, a spectrometer of gamma-quanta and neutrons, a spectrometer of electrons and protons with a large geometrical factor, and a spectrometer of electrons, protons, and nuclei with a small geometrical factor. The solar geophysical aspects of the experiment included the measurements of spectral and temporal parameters of solar hard electromagnetic (0.01–50 MeV) and neutron (〉20 MзB) radiation, the study of spectral, temporal, and spatial characteristics of energetic electrons (0.04–1.5 MeV), protons, and nuclei (1–200 MeV/nucleon) in the circumterrestrial space, as well as the correlations of these parameters with solar activity phenomena.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Radiophysics and quantum electronics 39 (1996), S. 1031-1035 
    ISSN: 1573-9120
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Abstract The main purpose of the GRIF-2 solar-geophysical experiment on board the ALPHA space vehicle is the comprehensive study of the temporal and spectral characteristics of the high-energy neutral radiations (gamma-quanta, neutrons, etc.) generated in solar flares. Another important part of the experiment is the study of the dynamics of energetic charged particles (electrons, protons, etc.) in the circumterrestrial space and its correlation with solar phenomena. The complex of instruments includes a high-sensitivity oriented spectrometer of gamma-quanta and neutrons, an oriented spectrometer of X-rays and electrons with a large geometrical factor, and a spectrometer of electrons and protons with a small geometrical factor. The spectrometer of gamma-quanta and neutrons measures particle fluxes and spectra in the gamma-quantum energy range 0.1– 10 MeV and the spectrometer of neutrons is used for energies over 10 MeV. The spectrometer of X-rays and electrons is intended for both the continuous control of magnetospheric electron precipitations and monitoring the X-ray solar activity in the range 10–100 keV. The spectrometer of charged particles with a small geometrical factor is intended for measurement of high-intensity charged particle fluxes in the trapped radiation zones in the Earth magnetosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 352-361 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The structure and hyperfine fields of Fe1−xCrx (x=0.0236–0.803) nanoparticles (average size of 27±2 nm) are studied at room temperature by combined x-ray diffraction and Mössbauer spectroscopy techniques. They are produced by fast evaporation of bulk alloys at 3 Torr Ar pressure. The bulk alloys of any composition are shown to exhibit a bcc structure, whereas the nanoparticles demonstrate a mixture of bcc and tetragonal σ phases in the Cr range from 24.4 to 83.03 at. %. At the Cr content of 2.36 at. % the lattice constant for nanoparticles is larger than that of the bulk alloy, though the values of hyperfine fields on Fe nuclei do not differ. The Mössbauer spectrum of nanoparticles contains an oxide doublet in addition to the sextet specific to that of the bulk alloy. In both cases the width of the sextet lines is rather narrow. However, even at ∼8 at. % Cr the lines of the sextet are broadened so much that it can be decomposed by two-three components. This is explained by freezing the high-temperature ferromagnetic fcc phase regions in the bcc lattice. As the Cr content increases, the Mössbauer spectra become more complex, transforming finally into a paramagnetic singlet. A complete ferromagnetic→paramagnetic transition is observed for the bulk alloy at 68 at. % Cr and for nanoparticles at 35 at. % Cr. The results are discussed under the assumption that at high temperatures the alloys are not homogeneous and exhibit fluctuations of the composition. With decrease of temperature these fluctuations result in decomposition of the alloy into two phases for nanoparticles whereas they are frozen at the cluster level in the bulk alloys holding a macroscopic homogeneity. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 7162-7170 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Photoluminescence (PL) spectra and time-resolved PL data from AlGaAs/GaAs superlattice structures containing thin InAs layers of about 1–3 monolayer grown on semi-insulating (001)-oriented GaAs substrates at lowered temperatures are studied. The size distribution of InAs quantum dots (QDs) among different families (modes) is controlled by variation of growth temperature and/or growth interruption. We demonstrate the stabilization of the PL magnitude caused by strong coupling between different modes and the full width at half maximum of "large size" QD modes within a certain temperature interval (50–150 K) due to feeding of the radiative transitions from nonradiative decay and carrier transfer arising from decaying excitonic states of the small size QD modes. Strong competition between different channels of ground state relaxation leads to an oscillating dependence of the PL transient for the small size QD mode. Efficient inter- and intramode tunneling rules out "bottleneck restrictions" for the PL. The parameters of intra- and intermode tunneling are determined from time-resolved PL. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 7001-7005 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ultrafine Fe–Ni (28%–32%) and Fe–Mn (30%) particles with an average size of 10–15 nm are studied by combined x-ray diffraction and Mössbauer spectroscopy techniques with the latter being applied at a temperature range from 298 to 4 K. They are produced by evaporation of bulk alloys at 3 Torr Ar pressure. From the x-ray data the ultrafine Fe–Ni (28%–32%) particles are a mixture of bcc and fcc phases, and the ultrafine Fe–Mn (30%) particles contain bcc, fcc, and hcp phases. It is shown that in the former the paramagnetic fcc phase transforms to the antiferromagnetic state with decreasing temperature from 77 down 4 K. As for the latter, the fcc phase is observed to be antiferromagnetic even at room temperature whereas the hcp phase keeps a paramagnetic state right down to 4 K. The results corroborate the Weiss hypothesis that the high temperature face-centered-cubic lattice of Fe-rich alloys can exist in two (ferro- and antiferromagnetic) spin states. The oxide contribution in the spectra is also separated. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 741-743 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Cesium recovery from the polluted layers in the 1/3 scale hydrogen negative ion source for LHD-NBI system has tested. It was found that the cesium recovery can be produced by additional discharges as from the cesium layer, aged by tungsten and residual gas, so as from the cesium layers, polluted by an occasional water leak. The highest cesium recovery to negative ion production was produced by a xenon arc, while glow discharge and arcing in hydrogen were less effective. The mechanism of recovery is the ejection of cesium from the underlying enriched layer by the arc and its transport to the surface. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 929-931 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The small model of scaled honeycomb surface-plasma source for intense multibeam H−(D−) ion production was studied. The increased sizes of the honeycomb cells (to 3×3 cm2) and of discharge layer thickness (to 1.5 cm) were tested. The plasma injection from the hollow hydrogen–cesium cathodes was used for a high-current semiplanotron discharge uniform operation at a low gas pressure. An optimal hydrogen pressure was about 1 Pa at maximal negative ion production. Extraction of H− ions from four emission apertures of 4×10 mm size each produces four elementary H− beams with intensity up to 100 mA each. No essential isotopic effect was found—the intensity of D− beams had about the same value (when discharge was operated in deuterium). © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...