Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9605
    Keywords: texture YBCO ; BaZrO3 ; ultrafine particles ; pushing effect ; seeding effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Abstract We prepared precursors with fine BaZrO3 inclusions for melt-texture growth of high-temperature superconductors with nominal composition of Y1.5Ba2Cu3O y + x BaZrO3 (x = 0, 0.04, 0.08, and 0.1), by the process of liquid-phase powder melt-texture growth (LPMG). We then investigated the effects of the precursors on the texture growth and the microstructure of composite YBa2Cu3O7-δ/Y2BaCuO5 (YBCO). The BaZrO3 particles were about 100 nm in size in the textured YBa2Cu3O7-δ (Y123), observed by the scanning electron microscopy (SEM). Owing to the pushing effects of growing fronts, fine particles were pushed out of and thus gathered in front of the growing fronts or between Y123 grains. The gathered particles in turn blocked the further growth of the Y123 grains. However, BaZrO3 particles seeded Y123 grains, giving rise to multigrain growths. These negative effects of BaZrO3 fine particles exclude themselves as effective flux pinning centers in the textured YBCO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 271-289 
    ISSN: 0271-2091
    Keywords: Least-squares finite element method ; Time-dependent ; Incompressible flows ; Bqussinesq approximation ; Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The time-dependent Navier-Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity-pressure-vorticity-temperature-heat-flux (u-P-ω-T-q) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...