Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004
  • 1990-1994  (2)
  • Selaginella  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 161 (1991), S. 168-180 
    ISSN: 1615-6102
    Keywords: Microsporogenesis ; Microtubules ; Mitotic apparatus ; Plastid polarity ; Selaginella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microsporogenesis inSelaginella was studied by fluorescence light microscopy and transmission electron microscopy. As in other examples of monoplastidic meiosis the plastids are involved in determination of division polarity and organization of microtubules. However, there are important differences: (1) the meiotic spindle develops from a unique prophase microtubule system associated with two plastids rather than from a typical quadripolar microtubule system associated with four plastids; (2) the division axes for first and second meiotic division are established sequentially, whereas as in all other cases the poles of second division are established before those of first division; and (3) the plastids remain in close contact with the nucleus throughout meiotic prophase and provide clues to the early determination of spindle orientation. In early prophase the single plastid divides in the plane of the future division and the two daughter plastids rotate apart until they lie on opposite sides of the nucleus. The procytokinetic plate (PCP) forms in association with the two slender plastids; it consists of two spindle-shaped microtubule arrays focused on the plastid tips with a plate of vesicles at the equatorial region and a picket row of microtubules around one side of the nucleus. Second plastid division occurs just before metaphase and the daughter plastids remain together at the spindle poles during first meiotic division. The meiotic spindle develops from merger of the component arrays of the PCP and additional microtubules emanating from the pair of plastid tips located at the poles. After inframeiotic interphase the plastids migrate to tetrahedral arrangement where they serve as poles of second division.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Actin ; Confocal microscopy ; Guard cells ; Microtubules ; Selaginella ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Using fluorescent probes and confocal laser scanning microscopy we have examined the organisation of the microtubule and actin components of the cytoskeleton in kidney-shaped guard cells of six species of Selaginella. The stomata of Selaginella exhibit novel cytoskeletal arrangements, and at different developmental stages, display similarities in microtubule organisation to the two major types of stomata: grass (dumbbell-shaped) and non-grass (kidney-shaped). Initially, cortical microtubules and F-actin radiate from the stomatal pore and extend across the external and internal periclinal cell surfaces of the guard cells. As the stomata differentiate, the cytoskeleton reorients only along the internal periclinal walls. Reorganisation is synchronous in guard cells of the same stoma. Microtubules on the inner periclinal walls of the guard cells now emanate from areas of the ventral wall on either side of the pore and form concentric circles around the pore. The rearrangement of F-actin is similar to that of microtubules although F-actin is less well organised. Radial arrays of both microtubules and F-actin are maintained adjacent to the external surfaces. Subsequently, in two of the six species of Selaginella examined, microtubules on both the internal and external walls become oriented longitudinally and exhibit no association with the ventral wall. In the other four species, microtubules adjacent to the internal walls revert to the initial radial alignment. These findings may have implications in the development and evolution of the stomatal complex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...