Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
  • 1985-1989  (17)
  • 1965-1969  (2)
  • 1935-1939  (7)
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 89 (1985), S. 4499-4501 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 347-375 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We review the recent progress in our understanding of the mechanical and electrical properties of carbon nanotubes, emphasizing the theoretical aspects. Nanotubes are the strongest materials known, but the ultimate limits of their strength have yet to be reached experimentally. Modeling of nanotube-reinforced composites indicates that the addition of small numbers of nanotubes may lead to a dramatic increase in the modulus, with only minimal crosslinking. Deformations in nanotube structures lead to novel structural transformations, some of which have clear electrical signatures that can be utilized in nanoscale sensors and devices. Chemical reactivity of nanotube walls is facilitated by strain, which can be used in processing and functionalization. Scanning tunneling microscopy and spectroscopy have provided a wealth of information about the structure and electronic properties of nanotubes, especially when coupled with appropriate theoretical models. Nanotubes are exceptional ballistic conductors, which can be used in a variety of nanodevices that can operate at room temperature. The quantum transport through nanotube structures is reviewed at some depth, and the critical roles played by band structure, one-dimensional confinement, and coupling to nanoscale contacts are emphasized. Because disorder or point defect-induced scattering is effectively averaged over the circumference of the nanotube, electrons can propagate ballistically over hundreds of nanometers. However, severe deformations or highly resistive contacts isolate nanotube segments and lead to the formation of quantum dots, which exhibit Coulomb blockade effects, even at room temperature. Metal-nanotube and nanotube-nanotube contacts range from highly transmissive to very resistive, depending on the symmetry of two structures, the charge transfer, and the detailed rehybridization of the wave functions. The progress in terms of nanotube applications has been extraordinarily rapid, as evidenced by the development of several nanotube-based prototypical devices, including memory and logic circuits, chemical sensors, electron emitters and electromechanical actuators.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 11 (1939), S. 222-223 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 30 (1938), S. 730-740 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 38 (1966), S. 1842-1847 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 20 (1987), S. 2557-2563 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 1310-1314 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 22 (1989), S. 256-261 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 5852-5858 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this study we present a unified theoretical description of neutral, saturated, phospholipid monolayers at air–water interfaces. This model encompasses the liquid-condensed (LC) to liquid-expanded (LE) and liquid-expanded to surface gas (SG) phase transitions observed in such systems. The model is a lattice model of lipid hydrocarbon chains which allows for the introduction of free volume. The lipid chains can be upright in a ground or excited state or collapsed relative to the substrate. Furthermore, the chains interact via short range potentials due to steric, van der Waals, and dipolar forces. We show that the LC/LE phase transition is to be understood as a chain melting transition and through the growth of lipid domains across the transition. We further show that the LE/SG transition involves the creation of large amounts of free volume into which the lipid chains can collapse.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Polymer bulletin 45 (2000), S. 439-445 
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary End-linked polydimethylsiloxane networks were synthesized, and used to quantify the reduction due to crosslinking of both the extent and thermodynamic stability of the crystalline phase. Networks of varying crosslink density were isothermally crystallized at various temperatures. The consequent melting points were found to be a linear function of the crystallization temperature, enabling equilibrium melting temperatures to be determined by extrapolation. From the dependence of the equilibrium melting point on crosslink density, it was determined that a network junction precludes roughly 8 adjoining chain units from incorporating into the crystal phase. This result is consistent with the measured degree of crystallinity suppression in the networks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...