Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1985-1989
  • AlN tunnel barrier  (1)
  • Aphelenchoides composticola  (1)
  • 1
    ISSN: 1572-9559
    Keywords: SIS receiver ; twin-slot planar antenna ; NbTiN superconductor ; bandgap energy ; AlN tunnel barrier ; RF loss ; cooled optics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have developed a niobium titanium nitride (NbTiN) based superconductor-insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 218 (2000), S. 91-101 
    ISSN: 1573-5036
    Keywords: alfalfa ; Aphelenchoides composticola ; Aphelenchus avenae ; barley ; fungi ; host ; nematodes ; N-mineralization ; organic substrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Isolates of Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, Penicillium sp., Rhizoctonia solani, Stemphylium sp., Thielaviopsis basicola, and Verticillium dahliae were cultured on potato–dextrose agar (PDA), barley-sand and alfalfa-sand substrates in petri-dish or in column microcosms. N-mineralization by fungi and fungal-feeding nematodes in combination or fungi alone was assessed. Numbers of Aphelenchus avenae or Aphelenchoides composticola supported by the fungi were measured every 7 days. Times for full colonization of the substrates by fungi ranged from 5 to 15 days. Rhizoctonia solani and B. cinerea on PDA supported the largest A. avenae and A. composticola populations, respectively. Penicillium sp. was a nonhost for A. composticola and A. avenae. Rhizoctonia solani, B. cinerea, V. dahliae, and F. oxysporum supported significantly more nematodes than the other four fungal species. The ranked order of fungi based on the amount of N mineralized in columns free of nematodes was A. alternata (with a rate of 0.052 μg N/g-sand per day), Stemphylium sp., V. dahliae, T. basicola, B. cinerea, F. oxysporum, R. solani, and Penicillium sp. (with a rate of 0.0045 μg N/g-sand perday). The presence of A. avenae resulted in significant increases in mineral N, compared to nematode-free columns colonized by F. oxysporum, R. solani, and T. basicola alone. The presence of A. composticola resulted in significant increases in mineral N, compared to nematode-free columns colonized by A. alternata, B. cinerea, F. oxysporum, and R. solani alone. There was more mineral N incolumns in the presence of A. composticola than A. avenae in most cases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...