Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004
  • 1980-1984  (1)
  • 1970-1974  (1)
  • 1950-1954
  • Chemistry  (2)
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Apparent second-order rate constants for complex formation between poly (I) and poly (C) and copolymers of C containing non-complementary I or U residues have been determined spectrophotometrically. The rate constants decrease as the concentration of either I or U in the C strands increases-the effect seems insensitive to the species of residue involved, when differences in the thermal stabilities of the poly (I) poly (C,I) and poly (I). poly (C,U) complexes are taken into account. These results suggest that low concentrations of relatively stable defects can alter the apparent kinetic “complexity” of polynucleotides as determined by hybridization methods (C0t analysis).
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 14 (1982), S. 927-932 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Aqueous iodination of trans-2-butenoic acid proceeds via hydrolysis of I2 to form HOI and I-, then rapid addition of HOI across the double bond to form the iodohydrin product. In the presence of iodate to keep iodide concentration low, the reaction proceeds at a conveniently measurable rate. The rate for the addition reaction \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm HOI + CH}_{\rm 3} {\rm CH=\!=CHCOOH} \to {\rm CH}_{\rm 3} {\rm CH(OH)CHICOOH}$$ \end{document} is -d[C4H6O2]/dt = 5900 [H+][C4H6O2][HOI]M/s at 25.0°C when [IO3-] = 0.025M and ionic strength = 0.3. The overall rate law in the presence of iodate is \documentclass{article}\pagestyle{empty}\begin{document}$$ -d[{\rm I}_{\rm 2}]/dt = 3.2 \times 10^{ - 3} \times 10^{ - 3} [{\rm H}^{\rm + }][{\rm IO}_{\rm 3}^ -]^{0.65} [{\rm C}_{\rm 4} {\rm H}_{\rm 6} {\rm O}_{\rm 2}]^{1/2} [{\rm I}_{\rm 2}]^{1/2} M/{\rm s}$$ \end{document} where [H+] and [IO3-] are total concentrations used to prepare the solution.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...