Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1975-1979
  • 1970-1974  (1)
  • 1935-1939
  • 1930-1934
  • Biochemistry and Biotechnology  (1)
  • Chebyshev polynomials  (1)
  • G2/M arrest  (1)
Material
Years
  • 2000-2004  (2)
  • 1975-1979
  • 1970-1974  (1)
  • 1935-1939
  • 1930-1934
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of the Institute of Statistical Mathematics 52 (2000), S. 557-573 
    ISSN: 1572-9052
    Keywords: Chebyshev polynomials ; convex combination ; extremal problems for polynomials ; Lagrange interpolation polynomial ; optimal discrimination designs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The extrapolation design problem for polynomial regression model on the design space [−1,1] is considered when the degree of the underlying polynomial model is with uncertainty. We investigate compound optimal extrapolation designs with two specific polynomial models, that is those with degrees |m, 2m}. We prove that to extrapolate at a point z, |z| 〉 1, the optimal convex combination of the two optimal extrapolation designs |ξ m * (z), ξ2m * (z)} for each model separately is a compound optimal extrapolation design to extrapolate at z. The results are applied to find the compound optimal discriminating designs for the two polynomial models with degree |m, 2m}, i.e., discriminating models by estimating the highest coefficient in each model. Finally, the relations between the compound optimal extrapolation design problem and certain nonlinear extremal problems for polynomials are worked out. It is shown that the solution of the compound optimal extrapolation design problem can be obtained by maximizing a (weighted) sum of two squared polynomials with degree m and 2m evaluated at the point z, |z| 〉 1, subject to the restriction that the sup-norm of the sum of squared polynomials is bounded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-675X
    Keywords: apoptosis ; cyclin B1/CDC 2 ; G2/M arrest ; MAD 2 ; paclitaxel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Paclitaxel (Taxol™) is a microtubule-interfering agent that induced persistent and transient G2/M arrest before apoptosis in human nasopharyngeal carcinoma (NPC) cells at high and low concentrations, respectively. In this study, we intended to explore the underlying molecular events and found that cellular cyclin B1/CDC 2 kinase activity was increased and persisted for 〉6 h upon paclitaxel treatment both at high and low concentrations. Furthermore, activation of MAD 2 checkprotein could account for the loss of cyclin B1 ubiquitination and the persistence of cyclin B1/CDC 2 activation in the cases. To investigate the involvement of cyclin B1 and MAD 2 activation in paclitaxel-induced apoptosis, we introduced affinity-purified anti-cyclin B1 and MAD 2 antibodies into NPC cells by electroporation before the further paclitaxel treatment. The antibodies against cyclin B1 and MAD 2 indeed attenuated paclitaxel-induced cytotoxicity and DNA fragmentation. Our study suggests that activation of cyclin B1/CDC 2 and MAD 2 were the M-phase events required for paclitaxel-induced apoptosis in NPC cells. The dys-regulated cyclin B1/CDC 2 activation could enhance the prometaphase progression, but activation of MAD 2 rendered cells inable to exit from the metaphase. Under this circumstance, cells were probably going to “mitotic catastrophe” and ultimately, destined to apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 15 (1973), S. 879-888 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The steady state, nonlinear diffusion equations which describe reactions in constrained enzyme solutions are of great interest in many biological and engineering applications. As in other types of nonlinear differential equations, exact analytical solutions do not exist except in some simplified cases. In this paper, a general procedure is presented for solving numerically for the substrate concentration profile and effectiveness factor utilizing the transformation method suggested by Na and Na. Design correlations for enzyme solutions constrained within spherical membranes are included. The use of a unique definition of the Thiele Modulus in these charts permits the clear illustration of the effects of substrate concentration and external mass transfer resistances on the overall effectiveness factor for the catalyst particle.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...