Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 32 (2000), S. 243-249 
    ISSN: 1432-0789
    Keywords: Key words Microorganisms ; Diversity ; Activity ; Grazing ; Stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of intense grazing, seasonal drought, and fire on soil microbial diversity (substrate utilization) and activity in a northern Chihuahuan Desert grassland were measured in summer 1997, winter 1998, and spring 1998. Intense livestock grazing was initiated in winter 1995, burning occurred in August 1994, and drought stresses were imposed from October 1994 to June 1997. Microbial diversity was inferred from the carbon substrate utilization patterns in both gram (+) and gram (–) Biolog plates. Microbial activity was estimated by the activity of selected enzymes. Neither microbial diversity nor activity was affected by grazing. The interaction of intense grazing and stress sub-treatments only occurred in spring for one set of diversity measurements. The maximum microbial diversity and activity occurred in the winter-drought-stress sub-plots in summer and spring. Burning reduced microbial diversity and most enzyme activities as compared to the control in summer and spring. Microbial diversity was also lower in summer-drought-stress sub-plots than in the control in summer and spring. Microbial diversity was highest in summer, intermediate in winter, and lowest in spring. Microbial activity was generally higher in summer and lower in winter. It was concluded that substrate availability was the most important factor affecting the diversity and activity of soil microorganisms within a season. Soil moisture was not the factor causing differences in microbial diversity and activity among the stress treatments, but it was a predictor for some microbial responses under a particular stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 64 (2000), S. 153-166 
    ISSN: 1573-2959
    Keywords: Soil and water retention ; bare patch size ; percent bare soil ; grass ; shrub ; remote sensing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The most important function of watersheds in the western U.S. is the capacity to retain soil and water, thereby providing stability in hydrologic head and minimizing stream sediment loads. Long-term soil and water retention varies directly with vegetation cover. Data on ground cover and plant species composition were collected from 129 sites in the Rio Grande drainage of south-central New Mexico. This area was previously assessed by classification of Advanced Very High Resolution Radiometry (AVHRR) imagery. The classification of irreversibly degraded sites failed to identify most of the severely degraded sites based on size of bare patches and 35% of the sites classified as degraded were healthy based on mean bare patch size and vegetation cover. Previous research showed that an index of unvegetated soil (bare patch size and percent of ground without vegetative cover) was the most robust indicator of the soil and water retention function. Although the regression of mean bare patch size on percent bare ground was significant (p 〈 0.001), percent bare ground accounted for only 11% of the variability in bare patch size. Therefore bare patch size cannot be estimated from data on percent bare ground derived from remote sensing. At sites with less than 25% grass cover, and on sites with more than 15% shrub cover, there were significant relationships between percent bare soil and mean bare patch size (p 〈 0.05). Several other indicators of ecosystem health were related to mean bare patch size: perennial plant species richness (r = 0.6, p 〈 0.0001), percent cover of increaser species (r = 0.5, p 〈 0.0001) and percent cover of forage useable by livestock (r = 0.62, p 〈 0.0001). There was no relationship between bare patch size and cover of species that are toxic to livestock. In order to assess the ability of western rangeland watersheds to retain soil and water using remote sensing, it will be necessary to detect and estimate sizes of bare patches ranging between at least 0.5 m in diameter to several meters in diameter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...