Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • Antiferromagnetism  (1)
  • free Cu2+  (1)
  • Chemistry
Material
Years
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    JBIC 5 (2000), S. 51-56 
    ISSN: 1432-1327
    Keywords: Key words Ferritin ; Dynamic relaxometry ; Paramagnetism ; Antiferromagnetism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  We introduce dynamic relaxometry as a novel technique for studying biochemical reactions, such as those leading to mineral formation (biomineralization). This technique was applied to follow the time course of iron oxidation and hydrolysis by the protein ferritin. Horse spleen apoferritin was loaded with single additions of 4, 10, 20, 40, and 100 ferrous ions per protein, and with multiple additions of 4, 10, 20, and 100 ferrous ions. The NMR T 2 relaxation time was then measured sequentially and continuously for up to 24 h. At low loading factors of 4–10 Fe atoms/molecule, the iron is rapidly bound and oxidized by the protein on a time scale of approximately 15 s to several minutes. At intermediate loading factors (10–40), rapid initial oxidation was observed, followed by the formation of antiferromagnetic clusters. This process occurred at a much slower rate and continued for up to several hours, but was inhibited at lower pH values. At higher loading factors (40–1000), iron oxidation may occur directly on the core, and this process may continue for up to 24 h following the initial loading. Dynamic relaxometry appears to be a potentially powerful technique that may well have applications beyond the study of iron upake by the ferritin protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: chicory ; Cu distribution ; Cu uptake ; free Cu2+ ; tomato ; xylem sap
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The uptake and distribution of copper was examined in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentumMill. cv. Rondy) plants grown in a Nutrient Film Technique System (NFT) with addition of 0.05, 5, 10 and 20 mg Cu L-1. Biomass production of shoots and roots of both chicory and tomato was strongly depressed by Cu concentrations higher than 5 mg Cu L-1 in the rooting media. Although Cu concentrations in both shoots and roots of both species increased with increasing Cu concentrations in the rooting media, the increase in roots was very much greater than that in shoots, in which the range of concentrations was small. A large proportion of total Cu uptake was retained by roots except when plants were grown in solution Cu concentrations of 0.05 mg Cu L-1. Copper retention by roots limited Cu translocation to xylem and shoots. Copper adsorption by the root appears to buffer against increases of Cu in the rooting media. A cupric-sensitive electrode used in conjunction with total Cu analysis by graphite furnace atomic absorption spectrophotometry (GFAAS) indicated that more than 99.6% of total Cu in xylem sap was in a complexed form. Large differences between measured and predicted Cu accumulation by shoots of tomato (0.134–0.243 mg Cu plant-1, 0.660–4.274 mg Cu plant-1, respectively) and chicory (0.095–0.203 mg Cu plant-1, 0.626–1.620 mg Cu plant-1, respectively) suggest that some xylem transported Cu is recirculated to roots via the phloem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...