Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1536
    Keywords: Key words Colloidal crystal ; Fluorine-containing polymer ; Giant crystals ; Morphology ; Reflection spectra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Gigantic colloidal single crystals (2–6 mm) are formed for fluorine-containing polymer spheres (120–210 nm in diameter) in exhaustively deionized aqueous suspensions. The spheres used are poly(tetrafluoroethylene) (PTFEA and PTFEB), copolymer of tetrafluoroethylene and perfluorovinylether (PFA) and copolymer of tetrafluoroethylene and perfluoropropylene (PTP). The phase diagrams of these spheres are obtained in the deionized suspensions and also in the presence of sodium chloride for PFA. The critical sphere concentrations of crystal melting (φ c) for these spheres are around 0.0006 in volume fraction, which are close to, but slightly larger than, those of monodispersed polystyrene spheres (φ c ≈ 0.00015) and colloidal silica spheres(φ c = 0.0002–0.0004) reported previously. The crystals are largest when the sphere concentrations are a bit higher than the φ c value and their size decreases as the sphere concentration increases. Reflection spectra are taken in sedimentation equilibrium as a function of the height from the bottom of the suspension. The static elastic modulus is estimated to be 10.8 and 28.7 Pa for PTFEA and PTP spheres at the sphere concentrations 0.00325 and 0.00322 in volume fraction, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-232X
    Keywords: Key words Fanconi anemia ; Mutation ; the FANCA gene ; the FANCC gene ; the FANCG gene ; Alternative splicing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Fanconi anemia (FA), an autosomal recessive disorder characterized by a progressive pancytopenia associated with congenital anomalies and high predisposition to malignancies, is a genetically and clinically heterogeneous disease. At least eight complementation groups (FA-A to FA-H) have been identified. Previously, we studied mutations of the FANCA gene, responsible for FA-A, and found pathogenic mutations in 12 of 15 unclassified Japanese FA patients. Here, we further studied an additional 5 FA patients for sequence alterations of the FANCA gene and found pathogenic mutations in 2 of them. We further analyzed mutations of the FANCC and FANCG genes, responsible for FA-C and FA-G, respectively, in the remaining 6 FA patients. Although there was no alterations in the FANCC gene in these 6 patients, two novel mutations of the FANCG gene, causing aberrant RNA splicing, were detected in 2 FA patients. One was a base substitution from G to C of the invariant GT dinucleotides at the splice donor site of intron 3, resulting in the skipping of exon 3, as well as the skipping of exons 3 and 4. The other was a base substitution from C to T in exon 8, creating a nonsense codon (Q356X). This mutation resulted in the exclusion of a sequence of 18 nucleotides containing the mutation from the mRNA, without affecting the splicing potential of either the authentic or the cryptic splice donor site. Collectively, 14 of the 20 unclassified Japanese FA patients belong to the FA-A group, 2 belong to the FA-G group, and none belongs to the FA-C group.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...