Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Photosynthesis is inhibited by high temperatures that plants are likely to experience under natural conditions. Both  increased  thylakoid  membrane  ionic  conductance and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) deactivation have been suggested as the primary cause. The moderately heat-tolerant crop Pima S-6 cotton (Gossypium barbadense) was used to examine heat stress-induced inhibition of photosynthesis. Previous field-work indicated that moderate heat stress (T = 35–45 °C) is associated with very rapid leaf temperature changes. Therefore, a system was devised for rapidly heating intact, attached leaves to mimic natural field heat-stress conditions and monitored Rubisco activation, carbon-cycle metabolites, thylakoid ionic conductance, and photosystem I activity. As a proxy for NADPH and stromal redox status the activation state of NADP-malate dehydrogenase (NADP-MDH) was measured. In dark-adapted cotton leaves, heating caused an increase in thylakoid permeability at temperatures as low as 36 °C. The increased permeability did not cause a decline in adenosine 5′-triphosphate (ATP) levels during steady-state or transient heating. Rapid heating caused a transient decline in ribulose 1,5-bisphosphate without a decrease in Rubisco activation. Sustained heating caused a decline in Rubisco activation and also oxidized the stroma as judged by NADP-MDH activation and this is hypothesized to result from increased cyclic photophosphorylation, explaining the maintenance of ATP content in the face of increased thylakoid membrane ion leakiness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Changes in light quantity and quality cause structural changes within the thylakoid membrane; long-term responses have been described for so-called ‘sun’ and ‘shade’ leaves. Many leaves, however, experience changes in irradiance on a time scale of minutes due to self-shading and sun flecks. In this study, mature, attached spinach leaves were grown at 300 µmol photons m−2 s−1 then rapidly switched to a different light treatment. The treatment irradiances were 10, 800 or 1500 µmol m−2 s−1 for 10 min, or 10 or 20 min of self-shading (about 10 µmol m−2 s−1). Image analysis of transmission electron micrographs revealed that a 10 min switch to a lower light intensity increased grana size and number per chloroplast profile by 10–20%. Returning the leaves to 300 µmol m−2 s−1 for 10 min reversed the phenomenon. Chlorophyll fluorescence measurements of detached, intact leaves at 77 K were suggestive of a transition from state 2 to state 1 upon shading. Diurnal ultrastructural measurements of granal size and number did not reveal a significant net change in ultrastructure over the time scale of hours. It is concluded that spinach chloroplasts can alter the degree of thylakoid appression in response to irradiance changes on a time scale of minutes. These ultrastructural responses are caused by biochemical and biophysical adjustments within the thylakoid membrane that serve to maximize photosynthesis and minimize photo-inhibition under rapidly fluctuating light environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...