Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 512-514 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We demonstrate the potential for ultrathin aluminum-oxide films as alternate gate dielectrics for Si complementary metal–oxide–semiconductor technology. Films are deposited in ultrahigh vacuum utilizing atomic beams of aluminum and oxygen on Si(100) surfaces. We show device-quality Si(100)/Al2O3 interfaces with interfacial trap densities in the 1010 cm−2 eV−1 range, and with leakage current densities five orders of magnitude lower than what is observed in SiO2 insulators at the same equivalent electrical thickness. As-grown films possess an amorphous-to-microcrystalline structure, depending upon the deposition temperature, and any interfacial layers between the Si(100) and Al2O3 layer are 〈∼0.5 nm. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 2710-2712 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the electrical and microstructural characteristics of La- and Y-based oxides grown on silicon substrates by ultrahigh vacuum atomic beam deposition, in order to examine their potential as alternate gate dielectrics for Si complementary metal oxide semiconductor technology. We have examined the issues of polycrystallinity and interfacial silicon oxide formation in these films and their effect on the leakage currents and the ability to deposit films with low electrical thickness. We observe that polycrystallinity in the films does not result in unacceptably high leakage currents. We show significant Si penetration in both types of films. We find that the interfacial SiO2 is much thicker at ∼1.5 nm for the Y-based oxide compared to the La-based oxide where the thickness is 〈0.5 nm. We also show that while the Y-based oxide films show excellent electrical properties, the La based films exhibit a large flat band voltage shift indicative of positive charge in the films. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on high effective mobilities in yttrium-oxide-based n-channel metal–oxide–semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y2O3 on top of a thin layer of interfacial SiO2. The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO2-based MOSFETs at higher fields with peak mobilities at approximately 210 cm2/V s. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...