Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i.e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 53 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Histoplasma capsulatum is a fungal pathogen that causes respiratory and systemic disease by proliferating within macrophages. While much is known about histoplasmosis, only a single virulence factor has been defined, in part because of the inefficiency of Histoplasma reverse genetics. As an alternative to allelic replacement, we have developed a telomeric plasmid-based system for silencing gene expression in Histoplasma by RNA interference (RNAi). Episomal expression of long RNAs that form stem–loop structures triggered gene silencing. To test the effectiveness of RNAi in Histoplasma, we depleted expression of a gfp transgene as well as two endogenous genes, ADE2 and URA5, and showed significant reductions in corresponding gene function. Silencing was target gene specific, stable during macrophage infection and reversible. We used RNAi targeting AGS1 (encoding α-(1,3)-glucan synthase) to deplete levels of α-(1,3)-glucan, a cell wall polysaccharide. Loss of α-(1,3)-glucan by RNAi yielded phenotypes indistinguishable from an AGS1 deletion: attenuation of the ability to kill macrophages and colonize murine lungs. This demonstrates for the first time that α-(1,3)-glucan is an important contributor to Histoplasma virulence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...