Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In situ neutron diffraction at 0.9 s time resolution was used to reveal the reaction mechanism during the self-propagating high-temperature synthesis (SHS) of Ti3SiC2 from furnace-ignited stoichiometric 3Ti + SiC + C mixtures. The diffraction patterns indicate that the SHS proceeded in five stages: (i) preheating of the reactants, (ii) the α→β phase transformation in Ti, (iii) preignition reactions, (iv) the formation of a single solid intermediate phase in 〈0.9 s, and (v) the rapid nucleation and growth of the product phase Ti3SiC2. No amorphous contribution to the diffraction patterns from a liquid phase was detected and, as such, it is unlikely that a liquid phase plays a major role in this SHS reaction. The intermediate phase is believed to be a solid solution of Si in TiC such that the overall stoichiometry is ∼3Ti:1Si:2C. Lattice parameters and known thermal expansion data were used to estimate the ignition temperature at 923 ± 10°C (supported by the α→β phase transformation in Ti) and the combustion temperature at 2320 ± 50°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...